These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19083188)

  • 1. Probing circadian rhythms in Chlamydomonas rheinhardtii by functional proteomics.
    Wagner V; Mittag M
    Methods Mol Biol; 2009; 479():173-88. PubMed ID: 19083188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional proteomics: a promising approach to find novel components of the circadian system.
    Wagner V; Gessner G; Mittag M
    Chronobiol Int; 2005; 22(3):403-15. PubMed ID: 16076645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian rhythms of gene expression in Chlamydomonas reinhardtii: circadian cycling of mRNA abundances of cab II, and possibly of beta-tubulin and cytochrome c.
    Jacobshagen S; Johnson CH
    Eur J Cell Biol; 1994 Jun; 64(1):142-52. PubMed ID: 7957302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii.
    Wagner V; Fiedler M; Markert C; Hippler M; Mittag M
    FEBS Lett; 2004 Feb; 559(1-3):129-35. PubMed ID: 14960320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii.
    Mittag M; Wagner V
    Biol Chem; 2003 May; 384(5):689-95. PubMed ID: 12817465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein disulfide isomerase 2 of Chlamydomonas reinhardtii is involved in circadian rhythm regulation.
    Filonova A; Haemsch P; Gebauer C; Weisheit W; Wagner V
    Mol Plant; 2013 Sep; 6(5):1503-17. PubMed ID: 23475997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells.
    Chen M; Zhao L; Sun YL; Cui SX; Zhang LF; Yang B; Wang J; Kuang TY; Huang F
    J Proteome Res; 2010 Aug; 9(8):3854-66. PubMed ID: 20509623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii.
    Förster B; Mathesius U; Pogson BJ
    Proteomics; 2006 Aug; 6(15):4309-20. PubMed ID: 16800035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: role of pineal.
    Rani S; Singh S; Malik S; Singh J; Kumar V
    Chronobiol Int; 2009 May; 26(4):653-65. PubMed ID: 19444747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian proteomics of the mouse retina.
    Tsuji T; Hirota T; Takemori N; Komori N; Yoshitane H; Fukuda M; Matsumoto H; Fukada Y
    Proteomics; 2007 Oct; 7(19):3500-8. PubMed ID: 17726681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock.
    Matsuo T; Ishiura M
    FEBS Lett; 2011 May; 585(10):1495-502. PubMed ID: 21354416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydomonas proteomics.
    Rolland N; Atteia A; Decottignies P; Garin J; Hippler M; Kreimer G; Lemaire SD; Mittag M; Wagner V
    Curr Opin Microbiol; 2009 Jun; 12(3):285-91. PubMed ID: 19451016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of serotonin levels by multiple light-entrainable endogenous rhythms.
    Wildt M; Goergen EM; Benton JL; Sandeman DC; Beltz BS
    J Exp Biol; 2004 Oct; 207(Pt 21):3765-74. PubMed ID: 15371484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian and ultradian rhythms in the crayfish caudal photoreceptor.
    Rodríguez-Sosa L; Calderón-Rosete G; Flores G
    Synapse; 2008 Sep; 62(9):643-52. PubMed ID: 18563837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature on circadian rhythm in the Japanese honeybee, Apis cerana japonica.
    Fuchikawa T; Shimizu I
    J Insect Physiol; 2007 Nov; 53(11):1179-87. PubMed ID: 17655856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the circadian clock in Chlamydomonas.
    Matsuo T; Ishiura M
    Int Rev Cell Mol Biol; 2010; 280():281-314. PubMed ID: 20797685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Gel 18O labeling for improved identification of proteins from 2-DE Gel spots in comparative proteomic experiments.
    Broedel O; Krause E; Stephanowitz H; Schuemann M; Eravci M; Weist S; Brunkau C; Wittke J; Eravci S; Baumgartner A
    J Proteome Res; 2009 Jul; 8(7):3771-7. PubMed ID: 19425618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic profiling of aging in the mouse heart: Altered expression of mitochondrial proteins.
    Chakravarti B; Oseguera M; Dalal N; Fathy P; Mallik B; Raval A; Chakravarti DN
    Arch Biochem Biophys; 2008 Jun; 474(1):22-31. PubMed ID: 18284913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics-based method for the assessment of marine pollution using liquid chromatography coupled with two-dimensional electrophoresis.
    Amelina H; Apraiz I; Sun W; Cristobal S
    J Proteome Res; 2007 Jun; 6(6):2094-104. PubMed ID: 17458988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
    Serrano G; Herrera-Palau R; Romero JM; Serrano A; Coupland G; Valverde F
    Curr Biol; 2009 Mar; 19(5):359-68. PubMed ID: 19230666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.