BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19084262)

  • 1. Mechanisms of cytotoxicity of 2- or 2,6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter.
    Kadoma Y; Ito S; Atsumi T; Fujisawa S
    Chemosphere; 2009 Feb; 74(5):626-32. PubMed ID: 19084262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic radical scavenging activity and cytotoxicity of 2-methoxy- and 2-t-butyl-substituted phenols and their dimers.
    Fujisawa S; Atsumi T; Kadoma Y; Ishihara M; Ito S; Yokoe I
    Anticancer Res; 2004; 24(5A):3019-26. PubMed ID: 15517910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity.
    Fujisawa S; Atsumi T; Kadoma Y; Sakagami H
    Toxicology; 2002 Aug; 177(1):39-54. PubMed ID: 12126794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between phenol-induced cytotoxicity and experimental inhibition rate constant or a theoretical parameter.
    Fujisawa S; Kadoma Y
    Mini Rev Med Chem; 2012 Jun; 12(6):477-90. PubMed ID: 22356159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical generation, radical-scavenging activity, and cytotoxicity of eugenol-related compounds.
    Fujisawa S; Atsumi T; Satoh K; Kadoma Y; Ishihara M; Okada N; Nagasaki M; Yokoe I; Sakagami H
    In Vitr Mol Toxicol; 2000; 13(4):269-80. PubMed ID: 11319278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the biological activities of 2-methoxyphenol antioxidants: effects of dimers.
    Fujisawa S; Ishihara M; Murakami Y; Atsumi T; Kadoma Y; Yokoe I
    In Vivo; 2007; 21(2):181-8. PubMed ID: 17436566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites.
    Fujisawa S; Kadoma Y; Yokoe I
    Chem Phys Lipids; 2004 Jul; 130(2):189-95. PubMed ID: 15172835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant and cyclooxygenase-2-inhibiting activity of 4,4'-biphenol, 2,2'-biphenol and phenol.
    Murakami Y; Ishii H; Hoshina S; Takada N; Ueki A; Tanaka S; Kadoma Y; Ito S; Machino M; Fujisawa S
    Anticancer Res; 2009 Jun; 29(6):2403-10. PubMed ID: 19528508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT).
    Saito M; Sakagami H; Fujisawa S
    Anticancer Res; 2003; 23(6C):4693-701. PubMed ID: 14981915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting effect of ortho-propenyl substituent on the antioxidant activity of natural phenols.
    Marteau C; Guitard R; Penverne C; Favier D; Nardello-Rataj V; Aubry JM
    Food Chem; 2016 Apr; 196():418-27. PubMed ID: 26593510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and antioxidant activity of [60]fullerene-BHT conjugates.
    Enes RF; Tomé AC; Cavaleiro JA; Amorati R; Fumo MG; Pedulli GF; Valgimigli L
    Chemistry; 2006 Jun; 12(17):4646-53. PubMed ID: 16534828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds.
    Fujisawa S; Atsumi T; Ishihara M; Kadoma Y
    Anticancer Res; 2004; 24(2B):563-9. PubMed ID: 15160995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: role of potential of phenoxyl radical/phenol redox couple.
    Nemeikaite-Ceniene A; Imbrasaite A; Sergediene E; Cenas N
    Arch Biochem Biophys; 2005 Sep; 441(2):182-90. PubMed ID: 16111645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of substituent effects on phenol toxicity.
    Wright JS; Shadnia H
    Chem Res Toxicol; 2008 Jul; 21(7):1426-31. PubMed ID: 18512964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical scavenging activity and cytotoxicity of ferulic acid.
    Ogiwara T; Satoh K; Kadoma Y; Murakami Y; Unten S; Atsumi T; Sakagami H; Fujisawa S
    Anticancer Res; 2002; 22(5):2711-7. PubMed ID: 12529986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of tumor-specific cytotoxicity and apoptosis by doxorubicin.
    Suzuki F; Hashimoto K; Kikuchi H; Nishikawa H; Matsumoto H; Shimada J; Kawase M; Sunaga K; Tsuda T; Satoh K; Sakagami H
    Anticancer Res; 2005; 25(2A):887-93. PubMed ID: 15868924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, cytotoxicity, and QSAR analysis of X-thiophenols in rapidly dividing cells.
    Verma RP; Kapur S; Barberena O; Shusterman A; Hansch CH; Selassie CD
    Chem Res Toxicol; 2003 Mar; 16(3):276-84. PubMed ID: 12641427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant activity of o-bisphenols: the role of intramolecular hydrogen bonding.
    Amorati R; Lucarini M; Mugnaini V; Pedulli GF
    J Org Chem; 2003 Jun; 68(13):5198-204. PubMed ID: 12816477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method.
    Fujisawa S; Kadoma Y
    In Vivo; 2006; 20(1):39-44. PubMed ID: 16433026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the toxicity of phenols: using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms.
    Shadnia H; Wright JS
    Chem Res Toxicol; 2008 Jun; 21(6):1197-204. PubMed ID: 18500785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.