These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
579 related articles for article (PubMed ID: 19084470)
1. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Sharma SK; Misra AK; Lucey PG; Lentz RC Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470 [TBL] [Abstract][Full Text] [Related]
2. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318 [TBL] [Abstract][Full Text] [Related]
3. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration. Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta TE; Bates DE Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):75-81. PubMed ID: 21333587 [TBL] [Abstract][Full Text] [Related]
4. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse. Misra AK; Sharma SK; Lucey PG Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575 [TBL] [Abstract][Full Text] [Related]
5. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Wiens RC; Sharma SK; Thompson J; Misra A; Lucey PG Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2324-34. PubMed ID: 16029853 [TBL] [Abstract][Full Text] [Related]
6. Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Sharma SK; Lucey PG; Ghosh M; Hubble HW; Horton KA Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2391-407. PubMed ID: 12909150 [TBL] [Abstract][Full Text] [Related]
7. Remote Raman and fluorescence studies of mineral samples. Bozlee BJ; Misra AK; Sharma SK; Ingram M Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2342-8. PubMed ID: 16029855 [TBL] [Abstract][Full Text] [Related]
9. A Two Components Approach for Long Range Remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy Using Low Laser Pulse Energy. Misra AK; Acosta-Maeda TE; Porter JN; Berlanga G; Muchow D; Sharma SK; Chee B Appl Spectrosc; 2019 Mar; 73(3):320-328. PubMed ID: 30347998 [TBL] [Abstract][Full Text] [Related]
10. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration. Sharma SK; Misra AK; Clegg SM; Barefield JE; Wiens RC; Acosta T Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3167-91. PubMed ID: 20529953 [TBL] [Abstract][Full Text] [Related]
11. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Osticioli I; Mendes NF; Nevin A; Gil FP; Becucci M; Castellucci E Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):525-31. PubMed ID: 19129003 [TBL] [Abstract][Full Text] [Related]
12. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
13. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters. Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922 [TBL] [Abstract][Full Text] [Related]
14. A Remote Raman System and Its Applications for Planetary Material Studies. Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280 [TBL] [Abstract][Full Text] [Related]
15. Pulsed remote Raman system for daytime measurements of mineral spectra. Misra AK; Sharma SK; Chio CH; Lucey PG; Lienert B Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2281-7. PubMed ID: 16029850 [TBL] [Abstract][Full Text] [Related]
16. Raman spectroscopic investigation of solid samples using a low-repetition-rate pulsed Nd:YAG laser as the excitation source. Zhang J; Feng Z; Li M; Chen J; Xu Q; Lian Y; Li C Appl Spectrosc; 2007 Jan; 61(1):38-47. PubMed ID: 17311715 [TBL] [Abstract][Full Text] [Related]
17. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS). Wan X; Wang P Appl Spectrosc; 2014; 68(10):1132-6. PubMed ID: 25239065 [TBL] [Abstract][Full Text] [Related]
18. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime. Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236 [TBL] [Abstract][Full Text] [Related]
20. Infrared nanosecond pulsed laser irradiation of stainless steel: micro iron-oxide zones generation. Ortiz-Morales M; Frausto-Reyes C; Soto-Bernal JJ; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():681-5. PubMed ID: 24699286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]