These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19085023)

  • 1. Vicinity analysis: a methodology for the identification of similar protein active sites.
    McGready A; Stevens A; Lipkin M; Hudson BD; Whitley DC; Ford MG
    J Mol Model; 2009 May; 15(5):489-98. PubMed ID: 19085023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting aurora2 kinase in oncogenesis: a structural bioinformatics approach to target validation and rational drug design.
    Vankayalapati H; Bearss DJ; Saldanha JW; Muñoz RM; Rojanala S; Von Hoff DD; Mahadevan D
    Mol Cancer Ther; 2003 Mar; 2(3):283-94. PubMed ID: 12657723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staurosporine tethered peptide ligands that target cAMP-dependent protein kinase (PKA): optimization and selectivity profiling.
    Shomin CD; Meyer SC; Ghosh I
    Bioorg Med Chem; 2009 Sep; 17(17):6196-202. PubMed ID: 19674907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of staurosporine bound to CDK2 and cAPK--new tools for structure-based design of protein kinase inhibitors.
    Toledo LM; Lydon NB
    Structure; 1997 Dec; 5(12):1551-6. PubMed ID: 9438871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of residue stability in transient protein-protein interactions involved in enzymatic phosphate hydrolysis. A computational study.
    Bonet J; Caltabiano G; Khan AK; Johnston MA; Corbí C; Gómez A; Rovira X; Teyra J; Villà-Freixa J
    Proteins; 2006 Apr; 63(1):65-77. PubMed ID: 16374872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory potential.
    Prade L; Engh RA; Girod A; Kinzel V; Huber R; Bossemeyer D
    Structure; 1997 Dec; 5(12):1627-37. PubMed ID: 9438863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention.
    Engh RA; Bossemeyer D
    Adv Enzyme Regul; 2001; 41():121-49. PubMed ID: 11384741
    [No Abstract]   [Full Text] [Related]  

  • 9. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.
    Narayana N; Cox S; Shaltiel S; Taylor SS; Xuong N
    Biochemistry; 1997 Apr; 36(15):4438-48. PubMed ID: 9109651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale mining for similar protein binding pockets: with RAPMAD retrieval on the fly becomes real.
    Krotzky T; Grunwald C; Egerland U; Klebe G
    J Chem Inf Model; 2015 Jan; 55(1):165-79. PubMed ID: 25474400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.
    Bhagavat R; Srinivasan N; Chandra N
    Proteins; 2017 Sep; 85(9):1699-1712. PubMed ID: 28547747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkylation of Staurosporine to Derive a Kinase Probe for Fluorescence Applications.
    Disney AJ; Kellam B; Dekker LV
    ChemMedChem; 2016 May; 11(9):972-9. PubMed ID: 27008372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development and validation of programs for ligand-binding-pocket search].
    Oda A
    Yakugaku Zasshi; 2011; 131(10):1429-35. PubMed ID: 21963969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases.
    Subramanian J; Sharma S; B-Rao C
    J Med Chem; 2006 Sep; 49(18):5434-41. PubMed ID: 16942017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex.
    Verkhivker GM
    Proteins; 2005 Feb; 58(3):706-16. PubMed ID: 15609350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of PKA-balanol interactions.
    Wong CF; Hünenberger PH; Akamine P; Narayana N; Diller T; McCammon JA; Taylor S; Xuong NH
    J Med Chem; 2001 May; 44(10):1530-9. PubMed ID: 11334563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacophore screening of the protein data bank for specific binding site chemistry.
    Campagna-Slater V; Arrowsmith AG; Zhao Y; Schapira M
    J Chem Inf Model; 2010 Mar; 50(3):358-67. PubMed ID: 20112952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for global protein deformability during protein-protein and protein-ligand docking.
    May A; Zacharias M
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):225-31. PubMed ID: 16214429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit.
    Diller TC; Madhusudan ; Xuong NH; Taylor SS
    Structure; 2001 Jan; 9(1):73-82. PubMed ID: 11342137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure.
    Bhagavat R; Sankar S; Srinivasan N; Chandra N
    Structure; 2018 Mar; 26(3):499-512.e2. PubMed ID: 29514079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.