These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19085023)

  • 41. A novel method for enzyme design.
    Zhu X; Lai L
    J Comput Chem; 2009 Jan; 30(2):256-67. PubMed ID: 18615422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ligand-induced global transitions in the catalytic domain of protein kinase A.
    Hyeon C; Jennings PA; Adams JA; Onuchic JN
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3023-8. PubMed ID: 19204278
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular Quantum Similarity, Chemical Reactivity and Database Screening of 3D Pharmacophores of the Protein Kinases A, B and G from Mycobacterium tuberculosis.
    Morales-Bayuelo A
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28635627
    [No Abstract]   [Full Text] [Related]  

  • 44. sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank.
    Kellenberger E; Muller P; Schalon C; Bret G; Foata N; Rognan D
    J Chem Inf Model; 2006; 46(2):717-27. PubMed ID: 16563002
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Allosteric Effect of Adenosine Triphosphate on Peptide Recognition by 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits.
    Kivi R; Solovjova K; Haljasorg T; Arukuusk P; Järv J
    Protein J; 2016 Dec; 35(6):459-466. PubMed ID: 27848106
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A method to search for similar protein local structures at ligand binding sites and its application to adenine recognition.
    Kobayashi N; Go N
    Eur Biophys J; 1997; 26(2):135-44. PubMed ID: 9232842
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.
    Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G
    J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft.
    Taylor SS; Radzio-Andzelm E; Madhusudan ; Cheng X; Ten Eyck L; Narayana N
    Pharmacol Ther; 1999; 82(2-3):133-41. PubMed ID: 10454192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.
    Parasuram R; Mills CL; Wang Z; Somasundaram S; Beuning PJ; Ondrechen MJ
    Methods; 2016 Jan; 93():51-63. PubMed ID: 26564235
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Merging chemical and biological space: Structural mapping of enzyme binding pocket space.
    Weskamp N; Hüllermeier E; Klebe G
    Proteins; 2009 Aug; 76(2):317-30. PubMed ID: 19173307
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A simple method for finding a protein's ligand-binding pockets.
    Saberi Fathi SM; Tuszynski JA
    BMC Struct Biol; 2014 Jul; 14():18. PubMed ID: 25038637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of Inhibitors of Protein-protein Interactions through REPLACE: Application to the Design and Development Non-ATP Competitive CDK Inhibitors.
    Nandha Premnath P; Craig S; McInnes C
    J Vis Exp; 2015 Oct; (105):e52441. PubMed ID: 26554946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The protein-small-molecule database, a non-redundant structural resource for the analysis of protein-ligand binding.
    Wallach I; Lilien R
    Bioinformatics; 2009 Mar; 25(5):615-20. PubMed ID: 19153135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analyzing the topology of active sites: on the prediction of pockets and subpockets.
    Volkamer A; Griewel A; Grombacher T; Rarey M
    J Chem Inf Model; 2010 Nov; 50(11):2041-52. PubMed ID: 20945875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2.
    Johnson LN; De Moliner E; Brown NR; Song H; Barford D; Endicott JA; Noble ME
    Pharmacol Ther; 2002; 93(2-3):113-24. PubMed ID: 12191604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recovering the true targets of specific ligands by virtual screening of the protein data bank.
    Paul N; Kellenberger E; Bret G; Müller P; Rognan D
    Proteins; 2004 Mar; 54(4):671-80. PubMed ID: 14997563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.