These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19085989)

  • 41. Characterization of Photophysical Properties of Photoactivatable Fluorescent Proteins for Super-Resolution Microscopy.
    Tao A; Zhang R; Yuan J
    J Phys Chem B; 2020 Mar; 124(10):1892-1897. PubMed ID: 32065748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoactivatable Large Stokes Shift Fluorophores for Multicolor Nanoscopy.
    Likhotkin I; Lincoln R; Bossi ML; Butkevich AN; Hell SW
    J Am Chem Soc; 2023 Jan; 145(3):1530-1534. PubMed ID: 36626161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoactivated localization microscopy (PALM): an optical technique for achieving ~10-nm resolution.
    Zhong H
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top91. PubMed ID: 21123432
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bridging the gap: Super-resolution microscopy of epithelial cell junctions.
    Bartle EI; Rao TC; Urner TM; Mattheyses AL
    Tissue Barriers; 2018 Jan; 6(1):e1404189. PubMed ID: 29420122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D super-resolution imaging by localization microscopy.
    Magenau A; Gaus K
    Methods Mol Biol; 2015; 1232():123-36. PubMed ID: 25331133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Imaging intracellular fluorescent proteins at nanometer resolution.
    Betzig E; Patterson GH; Sougrat R; Lindwasser OW; Olenych S; Bonifacino JS; Davidson MW; Lippincott-Schwartz J; Hess HF
    Science; 2006 Sep; 313(5793):1642-5. PubMed ID: 16902090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Localization-based super-resolution imaging of cellular structures.
    Kanchanawong P; Waterman CM
    Methods Mol Biol; 2013; 1046():59-84. PubMed ID: 23868582
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Eight years of single-molecule localization microscopy.
    Klein T; Proppert S; Sauer M
    Histochem Cell Biol; 2014 Jun; 141(6):561-75. PubMed ID: 24496595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superresolution imaging using single-molecule localization.
    Patterson G; Davidson M; Manley S; Lippincott-Schwartz J
    Annu Rev Phys Chem; 2010; 61():345-67. PubMed ID: 20055680
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM).
    Fu G; Huang T; Buss J; Coltharp C; Hensel Z; Xiao J
    PLoS One; 2010 Sep; 5(9):e12682. PubMed ID: 20856929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate.
    Durisic N; Laparra-Cuervo L; Sandoval-Álvarez A; Borbely JS; Lakadamyali M
    Nat Methods; 2014 Feb; 11(2):156-62. PubMed ID: 24390439
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visualizing cell structure and function with point-localization superresolution imaging.
    Sengupta P; Van Engelenburg S; Lippincott-Schwartz J
    Dev Cell; 2012 Dec; 23(6):1092-102. PubMed ID: 23237943
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct stochastic optical reconstruction microscopy with standard fluorescent probes.
    van de Linde S; Löschberger A; Klein T; Heidbreder M; Wolter S; Heilemann M; Sauer M
    Nat Protoc; 2011 Jun; 6(7):991-1009. PubMed ID: 21720313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sample drift correction in 3D fluorescence photoactivation localization microscopy.
    Mlodzianoski MJ; Schreiner JM; Callahan SP; Smolková K; Dlasková A; Santorová J; Ježek P; Bewersdorf J
    Opt Express; 2011 Aug; 19(16):15009-19. PubMed ID: 21934862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-Fragment Fluorescence Complementation Coupled with Photoactivated Localization Microscopy for Nanoscale Imaging of Ternary Complexes.
    Chen M; Liu S; Li W; Zhang Z; Zhang X; Zhang XE; Cui Z
    ACS Nano; 2016 Sep; 10(9):8482-90. PubMed ID: 27584616
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM.
    Vangindertael J; Beets I; Rocha S; Dedecker P; Schoofs L; Vanhoorelbeke K; Hofkens J; Mizuno H
    Sci Rep; 2015 Sep; 5():13532. PubMed ID: 26323790
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PALM imaging and cluster analysis of protein heterogeneity at the cell surface.
    Owen DM; Rentero C; Rossy J; Magenau A; Williamson D; Rodriguez M; Gaus K
    J Biophotonics; 2010 Jul; 3(7):446-54. PubMed ID: 20148419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advanced imaging of cellular signaling events.
    Cebecauer M; Humpolíčková J; Rossy J
    Methods Enzymol; 2012; 505():273-89. PubMed ID: 22289459
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoscale imaging by superresolution fluorescence microscopy and its emerging applications in biomedical research.
    Bertocchi C; Goh WI; Zhang Z; Kanchanawong P
    Crit Rev Biomed Eng; 2013; 41(4-5):281-308. PubMed ID: 24941410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.