These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19085989)

  • 81. Identification of PAmKate as a Red Photoactivatable Fluorescent Protein for Cryogenic Super-Resolution Imaging.
    Dahlberg PD; Sartor AM; Wang J; Saurabh S; Shapiro L; Moerner WE
    J Am Chem Soc; 2018 Oct; 140(39):12310-12313. PubMed ID: 30222332
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein.
    Matsuda T; Miyawaki A; Nagai T
    Nat Methods; 2008 Apr; 5(4):339-45. PubMed ID: 18345008
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
    Hajj B; Wisniewski J; El Beheiry M; Chen J; Revyakin A; Wu C; Dahan M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17480-5. PubMed ID: 25422417
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells.
    Waterman-Storer CM; Desai A; Bulinski JC; Salmon ED
    Curr Biol; 1998 Nov; 8(22):1227-30. PubMed ID: 9811609
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Single-Molecule Localization Microscopy with the Fluorescence-Activating and Absorption-Shifting Tag (FAST) System.
    Smith EM; Gautier A; Puchner EM
    ACS Chem Biol; 2019 Jun; 14(6):1115-1120. PubMed ID: 31083964
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Nanoscale Imaging of RNA-Protein Interactions with a Photoactivatable Trimolecular Fluorescence Complementation System.
    Chen M; Li S; Li W; Zhang ZP; Zhang X; Zhang XE; Ge F; Cui Z
    ACS Chem Biol; 2021 Jun; 16(6):1003-1010. PubMed ID: 34009928
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes.
    Kubalová I; Němečková A; Weisshart K; Hřibová E; Schubert V
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672992
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using PALM.
    Brown TA; Fetter RD; Tkachuk AN; Clayton DA
    Methods; 2010 Aug; 51(4):458-63. PubMed ID: 20060907
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics.
    Shroff H; Galbraith CG; Galbraith JA; Betzig E
    Nat Methods; 2008 May; 5(5):417-23. PubMed ID: 18408726
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Bacterial Chemoreceptor Imaging at High Spatiotemporal Resolution Using Photoconvertible Fluorescent Proteins.
    Solari J; Anquez F; Scherer KM; Shimizu TS
    Methods Mol Biol; 2018; 1729():203-231. PubMed ID: 29429094
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders.
    Platonova E; Winterflood CM; Junemann A; Albrecht D; Faix J; Ewers H
    Methods; 2015 Oct; 88():89-97. PubMed ID: 26123185
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Increasing microscopy resolution with photobleaching and intensity cumulant analysis.
    Brutkowski W; Dziob D; Bernas T
    Microsc Res Tech; 2015 Nov; 78(11):958-68. PubMed ID: 26278779
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging.
    Li Q; Wu SS; Chou KC
    Biophys J; 2009 Dec; 97(12):3224-8. PubMed ID: 20006960
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Superresolution imaging with standard fluorescent probes.
    Millis BA; Burnette DT; Lippincott-Schwartz J; Kachar B
    Curr Protoc Cell Biol; 2013 Sep; 60():21.8.1-21.8.17. PubMed ID: 24510788
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells.
    Mohapatra S; Weisshaar JC
    BMC Bioinformatics; 2018 Nov; 19(1):428. PubMed ID: 30445904
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Sequential superresolution imaging of multiple targets using a single fluorophore.
    Valley CC; Liu S; Lidke DS; Lidke KA
    PLoS One; 2015; 10(4):e0123941. PubMed ID: 25860558
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Superresolution measurements in vivo: imaging Drosophila embryo by photoactivated localization microscopy.
    Truong Quang BA; Lenne PF
    Methods Cell Biol; 2015; 125():119-42. PubMed ID: 25640427
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Chemically induced photoswitching of fluorescent probes--a general concept for super-resolution microscopy.
    Endesfelder U; Malkusch S; Flottmann B; Mondry J; Liguzinski P; Verveer PJ; Heilemann M
    Molecules; 2011 Apr; 16(4):3106-18. PubMed ID: 21490558
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Anti-fading media for live cell GFP imaging.
    Bogdanov AM; Kudryavtseva EI; Lukyanov KA
    PLoS One; 2012; 7(12):e53004. PubMed ID: 23285248
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Superresolution microscopy localizes endogenous Dvl2 to Wnt signaling-responsive biomolecular condensates.
    Schubert A; Voloshanenko O; Ragaller F; Gmach P; Kranz D; Scheeder C; Miersch T; Schulz M; Trümper L; Binder C; Lampe M; Engel U; Boutros M
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122476119. PubMed ID: 35867833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.