These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19086179)

  • 1. Global response patterns of terrestrial plant species to nitrogen addition.
    Xia J; Wan S
    New Phytol; 2008 Jul; 179(2):428-439. PubMed ID: 19086179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis.
    Lin D; Xia J; Wan S
    New Phytol; 2010 Oct; 188(1):187-98. PubMed ID: 20609113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.
    Li Y; Niu S; Yu G
    Glob Chang Biol; 2016 Feb; 22(2):934-43. PubMed ID: 26463578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple constraints cause positive and negative feedbacks limiting grassland soil CO
    Fay PA; Hui D; Jackson RB; Collins HP; Reichmann LG; Aspinwall MJ; Jin VL; Khasanova AR; Heckman RW; Polley HW
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33419921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.
    LeBauer DS; Treseder KK
    Ecology; 2008 Feb; 89(2):371-9. PubMed ID: 18409427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PlantNE: a global database of plant biomass from nitrogen-addition experiments.
    Xu X; Lu R; Yan L; Xia J
    Ecology; 2019 Nov; 100(11):e02840. PubMed ID: 31338829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems.
    Tang Z; Xu W; Zhou G; Bai Y; Li J; Tang X; Chen D; Liu Q; Ma W; Xiong G; He H; He N; Guo Y; Guo Q; Zhu J; Han W; Hu H; Fang J; Xie Z
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4033-4038. PubMed ID: 29666316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecosystem response to elevated CO(2) levels limited by nitrogen-induced plant species shift.
    Langley JA; Megonigal JP
    Nature; 2010 Jul; 466(7302):96-9. PubMed ID: 20596018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis.
    Feng H; Guo J; Peng C; Kneeshaw D; Roberge G; Pan C; Ma X; Zhou D; Wang W
    Glob Chang Biol; 2023 Jul; 29(14):3970-3989. PubMed ID: 37078965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased primary production shifts the structure and composition of a terrestrial arthropod community.
    Wimp GM; Murphy SM; Finke DL; Huberty AF; Denno RF
    Ecology; 2010 Nov; 91(11):3303-11. PubMed ID: 21141191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.
    Caldwell MM; Bornman JF; Ballaré CL; Flint SD; Kulandaivelu G
    Photochem Photobiol Sci; 2007 Mar; 6(3):252-66. PubMed ID: 17344961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.
    Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC
    Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis.
    Wang P; Huang K; Hu S
    New Phytol; 2020 Feb; 225(4):1491-1499. PubMed ID: 31610024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation.
    Zheng M; Zhou Z; Zhao P; Luo Y; Ye Q; Zhang K; Song L; Mo J
    Glob Chang Biol; 2020 Nov; 26(11):6203-6217. PubMed ID: 32869422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global database of plant production and carbon exchange from global change manipulative experiments.
    Song J; Ru J; Zheng M; Wang H; Fan Y; Yue X; Yu K; Zhou Z; Shao P; Han H; Lei L; Zhang Q; Li X; Su F; Zhang K; Wan S
    Sci Data; 2020 Oct; 7(1):323. PubMed ID: 33009397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of elevated CO₂, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland.
    Xu Z; Shimizu H; Ito S; Yagasaki Y; Zou C; Zhou G; Zheng Y
    Planta; 2014 Feb; 239(2):421-35. PubMed ID: 24463932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass distribution pattern and stoichiometric characteristics in main shrub ecosystems in Central Yunnan, China.
    Guo Z; Chen W; Chen Q; Liu X; Hong S; Zhu X; Gong H
    PeerJ; 2022; 10():e13005. PubMed ID: 35251784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-dependent responses of terrestrial invertebrates to anthropogenic nitrogen enrichment: A meta-analysis.
    Gallego-Zamorano J; de Jonge MMJ; Runge K; Huls SH; Wang J; Huijbregts MAJ; Schipper AM
    Glob Chang Biol; 2023 Jul; 29(14):4161-4173. PubMed ID: 37114471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecosystem-phase interactions: aquatic eutrophication decreases terrestrial plant diversity in California vernal pools.
    Kneitel JM; Lessin CL
    Oecologia; 2010 Jun; 163(2):461-9. PubMed ID: 20012097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands.
    Iversen CM; Bridgham SD; Kellogg LE
    Ecology; 2010 Mar; 91(3):693-707. PubMed ID: 20426329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.