These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19086211)

  • 1. Aqueous toxicity and food chain transfer of Quantum DOTs in freshwater algae and Ceriodaphnia dubia.
    Bouldin JL; Ingle TM; Sengupta A; Alexander R; Hannigan RE; Buchanan RA
    Environ Toxicol Chem; 2008 Sep; 27(9):1958-63. PubMed ID: 19086211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption of semiconductor nanocrystals by the aquatic invertebrate Ceriodaphnia dubia.
    Ingle TM; Alexander R; Bouldin J; Buchanan RA
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):249-52. PubMed ID: 18626563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization.
    Feswick A; Griffitt RJ; Siebein K; Barber DS
    Aquat Toxicol; 2013 Apr; 130-131():210-8. PubMed ID: 23419536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic transfer potential of two different crystalline phases of TiO
    Iswarya V; Bhuvaneshwari M; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2018 Apr; 197():89-97. PubMed ID: 29448127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia).
    Pakrashi S; Dalai S; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2014 Jul; 152():74-81. PubMed ID: 24736130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium uptake by Ceriodaphnia dubia from different exposures: relevance to body burden and toxicity.
    Sofyan A; Rosita G; Price DJ; Birge WJ
    Environ Toxicol Chem; 2007 Mar; 26(3):470-7. PubMed ID: 17373510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata.
    Brander SM; Mosser CM; Geist J; Hladik ML; Werner I
    Ecotoxicology; 2012 Nov; 21(8):2409-18. PubMed ID: 22975895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of natural water chemistry on nanosilver behavior and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata.
    McLaughlin J; Bonzongo JC
    Environ Toxicol Chem; 2012 Jan; 31(1):168-75. PubMed ID: 22020942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review.
    Rocha TL; Mestre NC; Sabóia-Morais SM; Bebianno MJ
    Environ Int; 2017 Jan; 98():1-17. PubMed ID: 27745949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of interactions between algal densities and cadmium concentrations on Ceriodaphnia dubia fecundity and survival.
    Rodgher S; Luiz Gaeta Espíndola E
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):765-73. PubMed ID: 17936356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment.
    Pakrashi S; Dalai S; Humayun A; Chakravarty S; Chandrasekaran N; Mukherjee A
    PLoS One; 2013; 8(9):e74003. PubMed ID: 24040143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dietborne copper and silver on reproduction by Ceriodaphnia dubia.
    Kolts JM; Boese CJ; Meyer JS
    Environ Toxicol Chem; 2009 Jan; 28(1):71-85. PubMed ID: 18710300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of chronic mixture toxicity of nickel-zinc-copper and nickel-zinc-copper-cadmium mixtures between Ceriodaphnia dubia and Pseudokirchneriella subcapitata.
    Nys C; Van Regenmortel T; Janssen CR; Blust R; Smolders E; De Schamphelaere KA
    Environ Toxicol Chem; 2017 Apr; 36(4):1056-1066. PubMed ID: 27669674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algae (Raphidocelis) reduce combined toxicity of nano-TiO
    Liu X; Wang J; Huang YW; Kong T
    Sci Total Environ; 2019 Oct; 686():246-253. PubMed ID: 31181512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.
    Dalai S; Iswarya V; Bhuvaneshwari M; Pakrashi S; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2014 Jul; 152():139-46. PubMed ID: 24755515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss).
    Naddy RB; Cohen AS; Stubblefield WA
    Environ Toxicol Chem; 2015 Apr; 34(4):809-15. PubMed ID: 25641563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the fate and toxicity of Thallium I and Thallium III to three aquatic organisms.
    Rickwood CJ; King M; Huntsman-Mapila P
    Ecotoxicol Environ Saf; 2015 May; 115():300-8. PubMed ID: 25659481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.
    Silva BF; Andreani T; Gavina A; Vieira MN; Pereira CM; Rocha-Santos T; Pereira R
    Aquat Toxicol; 2016 Jul; 176():197-207. PubMed ID: 27162069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aqueous, dietary and combined exposures of cadmium to Ceriodaphnia dubia.
    Sofyan A; Price DJ; Birge WJ
    Sci Total Environ; 2007 Oct; 385(1-3):108-16. PubMed ID: 16889818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the effect of nano-TiO
    Liu X; Wang J; Huang YW
    Chemosphere; 2021 Jan; 263():127958. PubMed ID: 32835977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.