BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19086385)

  • 21. Respiration and photosynthesis of bladders and leaves of aquatic utricularia species.
    Adamec L
    Plant Biol (Stuttg); 2006 Nov; 8(6):765-9. PubMed ID: 17203432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen concentrations inside the traps of the carnivorous plants Utricularia and Genlisea (Lentibulariaceae).
    Adamec L
    Ann Bot; 2007 Oct; 100(4):849-56. PubMed ID: 17720681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Species composition of microzooplankton Tintinnid from the coastal waters of Digha, Bay of Bengal.
    Dash S; Behera RK; Mohapatra PK; Sarangi RK; Raut D; Pati A; Patnaik L
    Environ Monit Assess; 2017 Jun; 189(6):258. PubMed ID: 28478543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Chemical disturbance of the phytoplankton structure in an artificial pond (Guaicaipuru, Edo. Miranda, Venezuela)].
    González F; Zoppi de Roa E
    Acta Cient Venez; 1999; 50(4):195-200. PubMed ID: 10974709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecological characteristics of plankton and aquatic vegetation in Lake Qiluhu.
    Mingming H; Huaidong Z; Yuchun W; Yingcai W; Zhen W; Weiju W; Gaofeng Z; Yao C; Yongding L
    Water Sci Technol; 2014; 69(8):1620-5. PubMed ID: 24759520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bottom-up linkages between primary production, zooplankton, and fish in a shallow, hypereutrophic lake.
    Matsuzaki SS; Suzuki K; Kadoya T; Nakagawa M; Takamura N
    Ecology; 2018 Sep; 99(9):2025-2036. PubMed ID: 29884987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The smallest but fastest: ecophysiological characteristics of traps of aquatic carnivorous Utricularia.
    Adamec L
    Plant Signal Behav; 2011 May; 6(5):640-6. PubMed ID: 21499028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dynamical model for the Utricularia trap.
    Llorens C; Argentina M; Bouret Y; Marmottant P; Vincent O
    J R Soc Interface; 2012 Nov; 9(76):3129-39. PubMed ID: 22859569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultivated bacterial diversity associated with the carnivorous plant Utricularia breviscapa (Lentibulariaceae) from floodplains in Brazil.
    Lima FR; Ferreira AJ; Menezes CG; Miranda VFO; Dourado MN; Araújo WL
    Braz J Microbiol; 2018; 49(4):714-722. PubMed ID: 29661568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zooplankton diversity of Chikkadevarayana canal in relation to physico-chemical characteristics.
    Smitha ; Shivashankar P; Venkataramana GV
    J Environ Biol; 2013 Jul; 34(4):819-24. PubMed ID: 24640263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of
    Korotasz AM; Bryan AL
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):273-277. PubMed ID: 29299657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Positive feedback favors invasion by a submersed freshwater plant.
    Urban RA; Titus JE; Hansen HH
    Oecologia; 2013 Jun; 172(2):515-23. PubMed ID: 23080302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex inter-Kingdom interactions: carnivorous plants affect growth of an aquatic vertebrate.
    Davenport JM; Riley AW
    J Anim Ecol; 2017 May; 86(3):484-489. PubMed ID: 28191630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Medicinal and environmental indicator species of Utricularia from montane forest of Peninsular Malaysia.
    Haron NW; Chew MY
    ScientificWorldJournal; 2012; 2012():234820. PubMed ID: 22619629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Metagenome of Utricularia gibba's Traps: Into the Microbial Input to a Carnivorous Plant.
    Alcaraz LD; Martínez-Sánchez S; Torres I; Ibarra-Laclette E; Herrera-Estrella L
    PLoS One; 2016; 11(2):e0148979. PubMed ID: 26859489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Snapshot prey spectrum analysis of the phylogenetically early-diverging carnivorous Utricularia multifida from U. section Polypompholyx (Lentibulariaceae).
    Horstmann M; Fleischmann A; Tollrian R; Poppinga S
    PLoS One; 2021; 16(4):e0249976. PubMed ID: 33826676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zooplankton fluctuations in Jurumirim Reservoir (São Paulo, Brazil): a three-year study.
    Sartori LP; Nogueira MG; Henry R; Moretto EM
    Braz J Biol; 2009 Feb; 69(1):1-18. PubMed ID: 19347141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of malathion and nitrate exposure on the zooplankton community in experimental mesocosms.
    Smith GR; Krishnamurthy SVB; Burger AC; Rettig JE
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9992-9997. PubMed ID: 29376215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of chromium and aluminium pollution on the diversity of zooplankton: a case study in the Chimaliapan wetland (Ramsar site) (Lerma basin, Mexico).
    García-García G; Nandini S; Sarma SS; Martínez-Jerónimo F; Jiménez-Contreras J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(4):534-47. PubMed ID: 22375536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the phytoplankton populations and physico-chemical conditions of treated sewage discharged into Lake Manzala in Egypt.
    el-Naggar ME; Shaaban-Dessouki SA; Abdel-Hamid MI; Aly EM
    New Microbiol; 1998 Apr; 21(2):183-96. PubMed ID: 9579343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.