BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1059 related articles for article (PubMed ID: 19087173)

  • 1. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.
    Feillet CA; Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2008 Dec; 28(12):2451-8. PubMed ID: 19087173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods.
    Isobe Y; Nishino H
    Brain Res; 2004 Jul; 1013(2):204-11. PubMed ID: 15193530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin, the pineal gland, and circadian rhythms.
    Cassone VM; Warren WS; Brooks DS; Lu J
    J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melatonin synthesis in the human pineal gland: advantages, implications, and difficulties.
    Ackermann K; Stehle JH
    Chronobiol Int; 2006; 23(1-2):369-79. PubMed ID: 16687310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evidence for a controlled offset of melatonin synthesis at dawn by the suprachiasmatic nucleus in the rat.
    Perreau-Lenz S; Kalsbeek A; Van Der Vliet J; Pévet P; Buijs RM
    Neuroscience; 2005; 130(3):797-803. PubMed ID: 15590161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daily oscillation in melatonin synthesis in the Turkey pineal gland and retina: diurnal and circadian rhythms.
    Zawilska JB; Lorenc A; Berezińska M; Vivien-Roels B; Pévet P; Skene DJ
    Chronobiol Int; 2006; 23(1-2):341-50. PubMed ID: 16687307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?
    Cailotto C; La Fleur SE; Van Heijningen C; Wortel J; Kalsbeek A; Feenstra M; Pévet P; Buijs RM
    Eur J Neurosci; 2005 Nov; 22(10):2531-40. PubMed ID: 16307595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pineal oscillator functioning in the chicken--effect of photoperiod and melatonin.
    Turkowska E; Majewski PM; Rai S; Skwarlo-Sonta K
    Chronobiol Int; 2014 Feb; 31(1):134-43. PubMed ID: 24134119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily torpor alters multiple gene expression in the suprachiasmatic nucleus and pineal gland of the Djungarian hamster (Phodopus sungorus).
    Herwig A; Revel F; Saboureau M; Pévet P; Steinlechner S
    Chronobiol Int; 2006; 23(1-2):269-76. PubMed ID: 16687300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin: both master clock output and internal time-giver in the circadian clocks network.
    Pevet P; Challet E
    J Physiol Paris; 2011 Dec; 105(4-6):170-82. PubMed ID: 21914478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression of the melatonin synthesis enzyme: arylalkylamine N-acetyltransferase in the suprachiasmatic nucleus of rat brain.
    Hamada T; Ootomi M; Horikawa K; Niki T; Wakamatu H; Ishida N
    Biochem Biophys Res Commun; 1999 May; 258(3):772-7. PubMed ID: 10329462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanism of pineal and suprachiasmatic regulation on circadian rhythm of body temperature in rats].
    Tong J; Qin LQ; Wang DJ
    Space Med Med Eng (Beijing); 2000 Apr; 13(2):101-3. PubMed ID: 11543047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SCN-independent clocks, methamphetamine and food restriction.
    Honma K; Honma S
    Eur J Neurosci; 2009 Nov; 30(9):1707-17. PubMed ID: 19878275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland.
    Cecon E; Fernandes PA; Pinato L; Ferreira ZS; Markus RP
    Chronobiol Int; 2010 Jan; 27(1):52-67. PubMed ID: 20205557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin in the multi-oscillatory mammalian circadian world.
    Pévet P; Agez L; Bothorel B; Saboureau M; Gauer F; Laurent V; Masson-Pévet M
    Chronobiol Int; 2006; 23(1-2):39-51. PubMed ID: 16687278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland.
    Fukuhara C
    Brain Res Mol Brain Res; 2004 Nov; 130(1-2):109-14. PubMed ID: 15519681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus.
    Lamont EW; Diaz LR; Barry-Shaw J; Stewart J; Amir S
    Neuroscience; 2005; 132(2):245-8. PubMed ID: 15802179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light and food signals cooperate to entrain the rat pineal circadian system.
    Wu T; Jin Y; Kato H; Fu Z
    J Neurosci Res; 2008 Nov; 86(14):3246-55. PubMed ID: 18627026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.