BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 19087187)

  • 21. api, A novel Medicago truncatula symbiotic mutant impaired in nodule primordium invasion.
    Teillet A; Garcia J; de Billy F; Gherardi M; Huguet T; Barker DG; de Carvalho-Niebel F; Journet EP
    Mol Plant Microbe Interact; 2008 May; 21(5):535-46. PubMed ID: 18393613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-inoculation with novel nodule-inhabiting bacteria reduces the benefits of legume-rhizobium symbiosis.
    Kosmopoulos JC; Batstone-Doyle RT; Heath KD
    Can J Microbiol; 2024 Jul; 70(7):275-288. PubMed ID: 38507780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coevolutionary genetic variation in the legume-rhizobium transcriptome.
    Heath KD; Burke PV; Stinchcombe JR
    Mol Ecol; 2012 Oct; 21(19):4735-47. PubMed ID: 22672103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.
    Goh CH; Nicotra AB; Mathesius U
    Plant Cell Environ; 2016 Apr; 39(4):883-96. PubMed ID: 26523414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The evolution of symbiont preference traits in the model legume Medicago truncatula.
    Batstone RT; Dutton EM; Wang D; Yang M; Frederickson ME
    New Phytol; 2017 Mar; 213(4):1850-1861. PubMed ID: 27864973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The direct effects of plant polyploidy on the legume-rhizobia mutualism.
    Forrester NJ; Ashman TL
    Ann Bot; 2018 Feb; 121(2):209-220. PubMed ID: 29182713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protocols for growing plant symbioses; rhizobia.
    Gourion B; Bourcy M; Cosson V; Ratet P
    Methods Mol Biol; 2013; 953():61-75. PubMed ID: 23073876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula.
    Frendo P; Harrison J; Norman C; Hernández Jiménez MJ; Van de Sype G; Gilabert A; Puppo A
    Mol Plant Microbe Interact; 2005 Mar; 18(3):254-9. PubMed ID: 15782639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conditional sanctioning in a legume-
    Westhoek A; Clark LJ; Culbert M; Dalchau N; Griffiths M; Jorrin B; Karunakaran R; Ledermann R; Tkacz A; Webb I; James EK; Poole PS; Turnbull LA
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in Rhizobium-legume symbiosis.
    Randhawa GS; Shubha ; Singh NK; Kumar A; Bhalla A
    Indian J Exp Biol; 2003 Oct; 41(10):1184-97. PubMed ID: 15242284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Host sanctions and the legume-rhizobium mutualism.
    Kiers ET; Rousseau RA; West SA; Denison RF
    Nature; 2003 Sep; 425(6953):78-81. PubMed ID: 12955144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland.
    van der Heijden MG; Bakker R; Verwaal J; Scheublin TR; Rutten M; van Logtestijn R; Staehelin C
    FEMS Microbiol Ecol; 2006 May; 56(2):178-87. PubMed ID: 16629748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism using mathematical modeling.
    Moyano G; Marco D; Knopoff D; Torres G; Turner C
    Math Biosci; 2017 Oct; 292():30-35. PubMed ID: 28711576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolomic profiling reveals suppression of oxylipin biosynthesis during the early stages of legume-rhizobia symbiosis.
    Zhang N; Venkateshwaran M; Boersma M; Harms A; Howes-Podoll M; den Os D; Ané JM; Sussman MR
    FEBS Lett; 2012 Sep; 586(19):3150-8. PubMed ID: 22796495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autopolyploidy alters nodule-level interactions in the legume-rhizobium mutualism.
    Forrester NJ; Ashman TL
    Am J Bot; 2020 Feb; 107(2):179-185. PubMed ID: 31721161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parasponia: a novel system for studying mutualism stability.
    Behm JE; Geurts R; Kiers ET
    Trends Plant Sci; 2014 Dec; 19(12):757-63. PubMed ID: 25239777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis.
    Porter SS; Stanton ML; Rice KJ
    PLoS One; 2011; 6(12):e27935. PubMed ID: 22174755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes.
    Luciński R; Polcyn W; Ratajczak L
    Acta Biochim Pol; 2002; 49(2):537-46. PubMed ID: 12362996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Herbivory eliminates fitness costs of mutualism exploiters.
    Simonsen AK; Stinchcombe JR
    New Phytol; 2014 Apr; 202(2):651-661. PubMed ID: 24428169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decreased coevolutionary potential and increased symbiont fecundity during the biological invasion of a legume-rhizobium mutualism.
    Wendlandt CE; Helliwell E; Roberts M; Nguyen KT; Friesen ML; von Wettberg E; Price P; Griffitts JS; Porter SS
    Evolution; 2021 Mar; 75(3):731-747. PubMed ID: 33433925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.