These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19087189)

  • 1. Catabolite repression in Escherichia coli- a comparison of modelling approaches.
    Kremling A; Kremling S; Bettenbrock K
    FEBS J; 2009 Jan; 276(2):594-602. PubMed ID: 19087189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon catabolite repression in bacteria.
    Stülke J; Hillen W
    Curr Opin Microbiol; 1999 Apr; 2(2):195-201. PubMed ID: 10322165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic network structure determines key aspects of functionality and regulation.
    Stelling J; Klamt S; Bettenbrock K; Schuster S; Gilles ED
    Nature; 2002 Nov; 420(6912):190-3. PubMed ID: 12432396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A discrete mathematical model applied to genetic regulation and metabolic networks.
    Asenjo AJ; Ramirez P; Rapaport I; Aracena J; Goles E; Andrews BA
    J Microbiol Biotechnol; 2007 Mar; 17(3):496-510. PubMed ID: 18050955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E.coli.
    Simão E; Remy E; Thieffry D; Chaouiya C
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii190-6. PubMed ID: 16204102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting biochemical parameters for cellular modeling: A mean-field approach.
    Iafolla MA; McMillen DR
    J Phys Chem B; 2006 Nov; 110(43):22019-28. PubMed ID: 17064172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding carbon catabolite repression in Escherichia coli using quantitative models.
    Kremling A; Geiselmann J; Ropers D; de Jong H
    Trends Microbiol; 2015 Feb; 23(2):99-109. PubMed ID: 25475882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairing and monitoring glucose catabolite repression in L-carnitine biosynthesis.
    Sevilla A; Cánovas M; Keller D; Reimers S; Iborra JL
    Biotechnol Prog; 2007; 23(6):1286-96. PubMed ID: 18062670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flagellar biosynthesis in silico: building quantitative models of regulatory networks.
    Herrgård MJ; Palsson BØ
    Cell; 2004 Jun; 117(6):689-90. PubMed ID: 15186769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relief of catabolite repression in a cAMP-independent catabolite gene activator mutant of Escherichia coli.
    Karimova G; Ladant D; Ullmann A
    Res Microbiol; 2004 Mar; 155(2):76-9. PubMed ID: 14990258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of some models of gene regulation in mixed-substrate microbial growth.
    Narang A
    J Theor Biol; 2006 Sep; 242(2):489-501. PubMed ID: 16650437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SysBioMed report: advancing systems biology for medical applications.
    Wolkenhauer O; Fell D; De Meyts P; Blüthgen N; Herzel H; Le Novère N; Höfer T; Schürrle K; van Leeuwen I
    IET Syst Biol; 2009 May; 3(3):131-6. PubMed ID: 19449974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative approach to catabolite repression in Escherichia coli.
    Bettenbrock K; Fischer S; Kremling A; Jahreis K; Sauter T; Gilles ED
    J Biol Chem; 2006 Feb; 281(5):2578-84. PubMed ID: 16263707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli.
    Nishio Y; Usuda Y; Matsui K; Kurata H
    Mol Syst Biol; 2008; 4():160. PubMed ID: 18197177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical interpretation of the transient sialic acid toxicity of a nanR mutant of Escherichia coli.
    Chu D; Roobol J; Blomfield IC
    J Mol Biol; 2008 Jan; 375(3):875-89. PubMed ID: 18054045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of the central metabolism of Escherichia coli to modified expression of the gene encoding the glucose-6-phosphate dehydrogenase.
    Nicolas C; Kiefer P; Letisse F; Krömer J; Massou S; Soucaille P; Wittmann C; Lindley ND; Portais JC
    FEBS Lett; 2007 Aug; 581(20):3771-6. PubMed ID: 17631881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Object Net: II. Modelling biopathways by hybrid functional Petri net with extension.
    Doi A; Nagasaki M; Fujita S; Matsuno H; Miyano S
    Appl Bioinformatics; 2003; 2(3):185-8. PubMed ID: 15130807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of bistability in induction of the Escherichia coli lac operon.
    Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME
    IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistability in the lactose utilization network of Escherichia coli.
    Ozbudak EM; Thattai M; Lim HN; Shraiman BI; Van Oudenaarden A
    Nature; 2004 Feb; 427(6976):737-40. PubMed ID: 14973486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.