These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 19087429)
1. Use of accelerator mass spectrometry for studies in nutrition. Jackson GS; Weaver C; Elmore D Nutr Res Rev; 2001 Dec; 14(2):317-34. PubMed ID: 19087429 [TBL] [Abstract][Full Text] [Related]
2. Accelerator mass spectrometry. Hellborg R; Skog G Mass Spectrom Rev; 2008; 27(5):398-427. PubMed ID: 18470926 [TBL] [Abstract][Full Text] [Related]
3. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry. Dingley KH; Roberts ML; Velsko CA; Turteltaub KW Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319 [TBL] [Abstract][Full Text] [Related]
4. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. Barker J; Garner RC Rapid Commun Mass Spectrom; 1999; 13(4):285-93. PubMed ID: 10097404 [TBL] [Abstract][Full Text] [Related]
5. Applications of accelerator mass spectrometry for pharmacological and toxicological research. Brown K; Tompkins EM; White IN Mass Spectrom Rev; 2006; 25(1):127-45. PubMed ID: 16059873 [TBL] [Abstract][Full Text] [Related]
6. Accelerator mass spectrometry analyses of environmental radionuclides: sensitivity, precision and standardisation. Hotchkis M; Fink D; Tuniz C; Vogt S Appl Radiat Isot; 2000 Jul; 53(1-2):31-7. PubMed ID: 10879834 [TBL] [Abstract][Full Text] [Related]
7. New ultrasensitive detection technologies and techniques for use in microdosing studies. Lappin G; Wagner CC; Langer O; van de Merbel N Bioanalysis; 2009 May; 1(2):357-66. PubMed ID: 21083172 [TBL] [Abstract][Full Text] [Related]
8. Investigation of factors that affect the sensitivity of accelerator mass spectrometry for cosmogenic 10Be and 26Al isotope analysis. Hunt AL; Larsen J; Bierman PR; Petrucci GA Anal Chem; 2008 Mar; 80(5):1656-63. PubMed ID: 18229892 [TBL] [Abstract][Full Text] [Related]
9. Accelerator mass spectrometry allows for cellular quantification of doxorubicin at femtomolar concentrations. DeGregorio MW; Dingley KH; Wurz GT; Ubick E; Turteltaub KW Cancer Chemother Pharmacol; 2006 Feb; 57(3):335-42. PubMed ID: 16047147 [TBL] [Abstract][Full Text] [Related]
10. Mass spectrometry with accelerators. Litherland AE; Zhao XL; Kieser WE Mass Spectrom Rev; 2011; 30(6):1037-72. PubMed ID: 22031277 [TBL] [Abstract][Full Text] [Related]
11. Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA. Turteltaub KW; Felton JS; Gledhill BL; Vogel JS; Southon JR; Caffee MW; Finkel RC; Nelson DE; Proctor ID; Davis JC Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5288-92. PubMed ID: 2371271 [TBL] [Abstract][Full Text] [Related]
12. Techniques: the application of accelerator mass spectrometry to pharmacology and toxicology. White IN; Brown K Trends Pharmacol Sci; 2004 Aug; 25(8):442-7. PubMed ID: 15276714 [TBL] [Abstract][Full Text] [Related]
13. Accelerator mass spectrometry of small biological samples. Salehpour M; Forsgard N; Possnert G Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3928-34. PubMed ID: 18980253 [TBL] [Abstract][Full Text] [Related]
14. Accelerator mass spectrometry in pharmaceutical research and development--a new ultrasensitive analytical method for isotope measurement. Garner RC Curr Drug Metab; 2000 Sep; 1(2):205-13. PubMed ID: 11465084 [TBL] [Abstract][Full Text] [Related]
15. Effective determination of the long-lived nuclide 41Ca in nuclear reactor bioshield concretes: comparison of liquid scintillation counting and accelerator mass spectrometry. Warwick PE; Croudace IW; Hillegonds DJ Anal Chem; 2009 Mar; 81(5):1901-6. PubMed ID: 19178149 [TBL] [Abstract][Full Text] [Related]
16. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Gilman SD; Gee SJ; Hammock BD; Vogel JS; Haack K; Buchholz BA; Freeman SP; Wester RC; Hui X; Maibach HI Anal Chem; 1998 Aug; 70(16):3463-9. PubMed ID: 9726169 [TBL] [Abstract][Full Text] [Related]
17. Accelerator mass spectrometry: application to study of aluminum kinetics in the rat. Meirav O; Sutton RA; Fink D; Middleton R; Klein J; Walker VR; Halabe A; Vetterli D; Johnson RR Am J Physiol; 1991 Mar; 260(3 Pt 2):F466-9. PubMed ID: 2000958 [TBL] [Abstract][Full Text] [Related]
18. Morphine brain pharmacokinetics at very low concentrations studied with accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry. Sadiq MW; Salehpour M; Forsgard N; Possnert G; Hammarlund-Udenaes M Drug Metab Dispos; 2011 Feb; 39(2):174-9. PubMed ID: 21059857 [TBL] [Abstract][Full Text] [Related]
19. Accelerator MS: its role as a frontline bioanalytical technique. Seymour MA Bioanalysis; 2011 Dec; 3(24):2817-23. PubMed ID: 22185281 [TBL] [Abstract][Full Text] [Related]
20. Current perspectives of 14C-isotope measurement in biomedical accelerator mass spectrometry. Lappin G; Garner RC Anal Bioanal Chem; 2004 Jan; 378(2):356-64. PubMed ID: 14624324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]