BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19087871)

  • 1. Distinctive autofluorescence of urine samples from individuals with bacteriuria compared with normals.
    Anwer AG; Sandeep PM; Goldys EM; Vemulpad S
    Clin Chim Acta; 2009 Mar; 401(1-2):73-5. PubMed ID: 19087871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimizing urine autofluorescence under multi-photon excitation conditions.
    Bukowski EJ; Bright FV
    Appl Spectrosc; 2004 Sep; 58(9):1101-5. PubMed ID: 15479527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of autofluorescence spectroscopy to detect human urinary tract infection.
    Perinchery SM; Kuzhiumparambil U; Vemulpad S; Goldys EM
    Talanta; 2010 Aug; 82(3):912-7. PubMed ID: 20678645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate analysis of laryngeal fluorescence spectra recorded in vivo.
    Eker C; Rydell R; Svanberg K; Andersson-Engels S
    Lasers Surg Med; 2001; 28(3):259-66. PubMed ID: 11295762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofluorescence characteristics of healthy oral mucosa at different anatomical sites.
    de Veld DC; Skurichina M; Witjes MJ; Duin RP; Sterenborg DJ; Star WM; Roodenburg JL
    Lasers Surg Med; 2003; 32(5):367-76. PubMed ID: 12766959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of individual characteristics on healthy oral mucosa autofluorescence spectra.
    de Veld DC; Sterenborg HJ; Roodenburg JL; Witjes MJ
    Oral Oncol; 2004 Sep; 40(8):815-23. PubMed ID: 15288837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue.
    Huang Z; Zheng W; Xie S; Chen R; Zeng H; McLean DI; Lui H
    Int J Oncol; 2004 Jan; 24(1):59-63. PubMed ID: 14654941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin 8 is a surrogate marker for rapid diagnosis of bacteriuria.
    Zaki Mel S
    Immunol Invest; 2008; 37(7):694-703. PubMed ID: 18821216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved autofluorescence spectroscopy for classifying normal and premalignant oral tissues.
    Chen HM; Chiang CP; You C; Hsiao TC; Wang CY
    Lasers Surg Med; 2005 Jul; 37(1):37-45. PubMed ID: 15954122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of rapid urine screening tests to detect asymptomatic bacteriuria in pregnancy.
    Kacmaz B; Cakir O; Aksoy A; Biri A
    Jpn J Infect Dis; 2006 Aug; 59(4):261-3. PubMed ID: 16936347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel factor analysis of ovarian autofluorescence as a cancer diagnostic.
    George R; Michaelides M; Brewer MA; Utzinger U
    Lasers Surg Med; 2012 Apr; 44(4):282-95. PubMed ID: 22407572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative unspun-urine microscopy as a quick, reliable examination for bacteriuria.
    Hiraoka M; Hida Y; Mori Y; Tsukahara H; Ohshima Y; Yoshida H; Mayumi M
    Scand J Clin Lab Invest; 2005; 65(2):125-32. PubMed ID: 16025835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Applying patial least-squares discriminant analysis on autofluorescence spectra to identify gastric cancer].
    Shi XF; Ma J; Mao WZ; Li Y; Zheng RE; Meng JW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):295-8. PubMed ID: 16826910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors.
    Aathithan S; Plant JC; Chaudry AN; French GL
    J Clin Microbiol; 2001 Jul; 39(7):2590-3. PubMed ID: 11427574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal component analysis and artificial neural network analysis of oral tissue fluorescence spectra: classification of normal premalignant and malignant pathological conditions.
    Nayak GS; Kamath S; Pai KM; Sarkar A; Ray S; Kurien J; D'Almeida L; Krishnanand BR; Santhosh C; Kartha VB; Mahato KK
    Biopolymers; 2006 Jun; 82(2):152-66. PubMed ID: 16470821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring chemical changes of dry-cured Parma ham during processing by surface autofluorescence spectroscopy.
    Møller JK; Parolari G; Gabba L; Christensen J; Skibsted LH
    J Agric Food Chem; 2003 Feb; 51(5):1224-30. PubMed ID: 12590459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of IRIS IQ ELITE and microscopy for urinalysis and evaluation of performance in predicting outcome of urine cultures].
    Ledru S; Canonne JP
    Ann Biol Clin (Paris); 2008; 66(5):555-9. PubMed ID: 18957345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis.
    Dimitrow E; Riemann I; Ehlers A; Koehler MJ; Norgauer J; Elsner P; König K; Kaatz M
    Exp Dermatol; 2009 Jun; 18(6):509-15. PubMed ID: 19243426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atypical cells in the urinary sediment: a protocol for cytological analysis of the urinary sediment.
    Fernández-Aceñero MJ; Lorence D; Criado L; Aguirregoicoa E
    Cytopathology; 2008 Dec; 19(6):381-4. PubMed ID: 18540878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the interaction among pyronine Y, potassium bromate and naphthols by absorption, three-dimension fluorescence and resonance light scattering spectra and their application.
    Yang H; Wang Y; Wang Y; Li J; Xiao X; Tan X
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1290-5. PubMed ID: 18499514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.