BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19088196)

  • 1. DEAD-box proteins can completely separate an RNA duplex using a single ATP.
    Chen Y; Potratz JP; Tijerina P; Del Campo M; Lambowitz AM; Russell R
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20203-8. PubMed ID: 19088196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
    Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM
    Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEAD-box proteins unwind duplexes by local strand separation.
    Yang Q; Del Campo M; Lambowitz AM; Jankowsky E
    Mol Cell; 2007 Oct; 28(2):253-63. PubMed ID: 17964264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p.
    Putnam AA; Gao Z; Liu F; Jia H; Yang Q; Jankowsky E
    Mol Cell; 2015 Aug; 59(4):541-52. PubMed ID: 26212457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding.
    Liu F; Putnam A; Jankowsky E
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20209-14. PubMed ID: 19088201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
    Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
    Jarmoskaite I; Tijerina P; Russell R
    J Biol Chem; 2021; 296():100132. PubMed ID: 33262215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1.
    Yang Q; Jankowsky E
    Biochemistry; 2005 Oct; 44(41):13591-601. PubMed ID: 16216083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases.
    Yang Q; Jankowsky E
    Nat Struct Mol Biol; 2006 Nov; 13(11):981-6. PubMed ID: 17072313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the Yeast DEAD box protein Mss116p reveals two wedges that crimp RNA.
    Del Campo M; Lambowitz AM
    Mol Cell; 2009 Sep; 35(5):598-609. PubMed ID: 19748356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins.
    Hilbert M; Karow AR; Klostermeier D
    Biol Chem; 2009 Dec; 390(12):1237-50. PubMed ID: 19747077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEAD-box helicases form nucleotide-dependent, long-lived complexes with RNA.
    Liu F; Putnam AA; Jankowsky E
    Biochemistry; 2014 Jan; 53(2):423-33. PubMed ID: 24367975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DEAD-box proteins as RNA helicases and chaperones.
    Jarmoskaite I; Russell R
    Wiley Interdiscip Rev RNA; 2011; 2(1):135-52. PubMed ID: 21297876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP sensing by DEAD-box RNA helicases.
    Putnam AA; Jankowsky E
    J Mol Biol; 2013 Oct; 425(20):3839-45. PubMed ID: 23702290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
    Jarmoskaite I; Helmers AE; Russell R
    Methods Enzymol; 2022; 673():53-76. PubMed ID: 35965018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo.
    Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R
    J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence methods in the investigation of the DEAD-box helicase mechanism.
    Andreou AZ; Klostermeier D
    Exp Suppl; 2014; 105():161-92. PubMed ID: 25095995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.
    Banroques J; Doère M; Dreyfus M; Linder P; Tanner NK
    J Mol Biol; 2010 Mar; 396(4):949-66. PubMed ID: 20026132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duplex destabilization by four ribosomal DEAD-box proteins.
    Garcia I; Albring MJ; Uhlenbeck OC
    Biochemistry; 2012 Dec; 51(50):10109-18. PubMed ID: 23153376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.