These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vicina. Balint CN; Dickinson MH J Exp Biol; 2004 Oct; 207(Pt 22):3813-38. PubMed ID: 15472014 [TBL] [Abstract][Full Text] [Related]
46. Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. Tanaka H; Whitney JP; Wood RJ Integr Comp Biol; 2011 Jul; 51(1):142-50. PubMed ID: 21622947 [TBL] [Abstract][Full Text] [Related]
47. Fluid-structure interaction simulation of an avian flight model. Ruck S; Oertel H J Exp Biol; 2010 Dec; 213(Pt 24):4180-92. PubMed ID: 21112999 [TBL] [Abstract][Full Text] [Related]
48. Induced airflow in flying insects II. Measurement of induced flow. Sane SP; Jacobson NP J Exp Biol; 2006 Jan; 209(Pt 1):43-56. PubMed ID: 16354777 [TBL] [Abstract][Full Text] [Related]
49. Untethered hovering flapping flight of a 3D-printed mechanical insect. Richter C; Lipson H Artif Life; 2011; 17(2):73-86. PubMed ID: 21370958 [TBL] [Abstract][Full Text] [Related]
50. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement. Harne RL; Wang KW J R Soc Interface; 2015 Mar; 12(104):20141367. PubMed ID: 25608517 [TBL] [Abstract][Full Text] [Related]
51. Spanwise flow and the attachment of the leading-edge vortex on insect wings. Birch JM; Dickinson MH Nature; 2001 Aug; 412(6848):729-33. PubMed ID: 11507639 [TBL] [Abstract][Full Text] [Related]
52. Damping in flapping flight and its implications for manoeuvring, scaling and evolution. Hedrick TL J Exp Biol; 2011 Dec; 214(Pt 24):4073-81. PubMed ID: 22116750 [TBL] [Abstract][Full Text] [Related]
53. Quantifying the complexity of bat wing kinematics. Riskin DK; Willis DJ; Iriarte-Díaz J; Hedrick TL; Kostandov M; Chen J; Laidlaw DH; Breuer KS; Swartz SM J Theor Biol; 2008 Oct; 254(3):604-15. PubMed ID: 18621062 [TBL] [Abstract][Full Text] [Related]
54. A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. Ramamurti R; Sandberg WC J Exp Biol; 2007 Mar; 210(Pt 5):881-96. PubMed ID: 17297147 [TBL] [Abstract][Full Text] [Related]
55. Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli. Wang H; Ando N; Kanzaki R J Exp Biol; 2008 Feb; 211(Pt 3):423-32. PubMed ID: 18203998 [TBL] [Abstract][Full Text] [Related]
56. The implications of low-speed fixed-wing aerofoil measurements on the analysis and performance of flapping bird wings. Spedding GR; Hedenström AH; McArthur J; Rosén M J Exp Biol; 2008 Jan; 211(Pt 2):215-23. PubMed ID: 18165249 [TBL] [Abstract][Full Text] [Related]
57. Passive mechanism of pitch recoil in flapping insect wings. Ishihara D; Horie T Bioinspir Biomim; 2016 Dec; 12(1):016008. PubMed ID: 27995899 [TBL] [Abstract][Full Text] [Related]
58. Effects of structural flexibility of wings in flapping flight of butterfly. Senda K; Obara T; Kitamura M; Yokoyama N; Hirai N; Iima M Bioinspir Biomim; 2012 Jun; 7(2):025002. PubMed ID: 22617048 [TBL] [Abstract][Full Text] [Related]
59. Rotational accelerations stabilize leading edge vortices on revolving fly wings. Lentink D; Dickinson MH J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415 [TBL] [Abstract][Full Text] [Related]
60. Flapping wing flight can save aerodynamic power compared to steady flight. Pesavento U; Wang ZJ Phys Rev Lett; 2009 Sep; 103(11):118102. PubMed ID: 19792403 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]