These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19088212)

  • 1. Habitat temperature is an important determinant of cholesterol contents in copepods.
    Hassett RP; Crockett EL
    J Exp Biol; 2009 Jan; 212(Pt 1):71-7. PubMed ID: 19088212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Thermal tolerance of some marine copepods].
    Liao YB; Chen QZ; Zeng JN; Xu XQ; Shou L; Liu JJ; Jiang ZB; Zheng P
    Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):449-52. PubMed ID: 18464656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis.
    Rahlff J; Peters J; Moyano M; Pless O; Claussen C; Peck MA
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():348-358. PubMed ID: 27825870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal tolerance of Acartia tonsa: In relation to acclimation temperature and life stage.
    Sunar MC; Kır M
    J Therm Biol; 2021 Dec; 102():103116. PubMed ID: 34863480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes.
    Souissi A; Hwang JS; Souissi S
    Sci Rep; 2021 Oct; 11(1):20139. PubMed ID: 34635769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cholesterol-enriched diet enhances egg production and egg viability without altering cholesterol Content of biological membranes in the copepod Acartia hudsonica.
    Crockett EL; Hassett RP
    Physiol Biochem Zool; 2005; 78(3):424-33. PubMed ID: 15887089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel index based on planktonic copepod reproductive traits as a tool for marine ecotoxicology studies.
    Hussain MB; Laabir M; Daly Yahia MN
    Sci Total Environ; 2020 Jul; 727():138621. PubMed ID: 32498212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of digestive enzymes of calanoid copepod species from different latitudes in relation to temperature, pH and food.
    Freese D; Kreibich T; Niehoff B
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Aug; 162(4):66-72. PubMed ID: 22561197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda).
    Hansen BH; Altin D; Rørvik SF; Øverjordet IB; Olsen AJ; Nordtug T
    Sci Total Environ; 2011 Jan; 409(4):704-9. PubMed ID: 21130489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acartia tonsa Dana 1849 as a Model Organism: Considerations on Acclimation in Ecotoxicological Assays.
    Lopes LFP; Agostini VO; Moreira RA; Muxagata E
    Bull Environ Contam Toxicol; 2021 May; 106(5):734-739. PubMed ID: 33770196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the in situ fertilization status of two marine copepod species, Temora longicornis and Eurytemora herdmani; how common are unfertilized eggs in nature?
    Lasley-Rasher RS; Kramer AM; Burdett-Coutts V; Yen J
    PLoS One; 2014; 9(11):e112920. PubMed ID: 25397669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of developmental acclimation on adult salinity tolerance in the freshwater-invading copepod Eurytemora affinis.
    Lee CE; Petersen CH
    Physiol Biochem Zool; 2003; 76(3):296-301. PubMed ID: 12905115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal physiology of warm-spring colonists: variation among lake chub (Cyprinidae: Couesius plumbeus) populations.
    Darveau CA; Taylor EB; Schulte PM
    Physiol Biochem Zool; 2012; 85(6):607-17. PubMed ID: 23099458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum.
    Low JSY; Chew LL; Ng CC; Goh HC; Lehette P; Chong VC
    J Therm Biol; 2018 May; 74():14-22. PubMed ID: 29801619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods.
    Grenvald JC; Nielsen TG; Hjorth M
    Ecotoxicology; 2013 Jan; 22(1):184-98. PubMed ID: 23143803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis.
    Wilson RS; James RS; Johnston IA
    J Comp Physiol B; 2000 Mar; 170(2):117-24. PubMed ID: 10791571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthesis of growth rates in marine epipelagic invertebrate zooplankton.
    Hirst AG; Roff JC; Lampitt RS
    Adv Mar Biol; 2003; 44():1-142. PubMed ID: 12846041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of Vibrio cholerae O1 El Tor and O139 Bengal with the Copepods Acartia tonsa and Eurytemora affinis.
    Rawlings TK; Ruiz GM; Colwell RR
    Appl Environ Microbiol; 2007 Dec; 73(24):7926-33. PubMed ID: 17951440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Species composition and distribution characteristics of pelagic copepods in the Northern Sea of Fujian during withdraw of Zhe-Min coastal current].
    Wang YG; Lin JH; Wang CG; Lin M
    Huan Jing Ke Xue; 2012 Jun; 33(6):1839-45. PubMed ID: 22946163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.