These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 19088215)

  • 21. Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing.
    Ishihara D; Yamashita Y; Horie T; Yoshida S; Niho T
    J Exp Biol; 2009 Dec; 212(Pt 23):3882-91. PubMed ID: 19915131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of drag in insect hovering.
    Wang ZJ
    J Exp Biol; 2004 Nov; 207(Pt 23):4147-55. PubMed ID: 15498960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies.
    Ishihara D; Horie T; Niho T
    Bioinspir Biomim; 2014 Nov; 9(4):046009. PubMed ID: 25378268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluid-structure interaction simulation of an avian flight model.
    Ruck S; Oertel H
    J Exp Biol; 2010 Dec; 213(Pt 24):4180-92. PubMed ID: 21112999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering.
    Ramamurti R; Sandberg WC
    J Exp Biol; 2007 Mar; 210(Pt 5):881-96. PubMed ID: 17297147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerodynamic efficiency of flapping flight: analysis of a two-stroke model.
    Wang ZJ
    J Exp Biol; 2008 Jan; 211(Pt 2):234-8. PubMed ID: 18165251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size effects on insect hovering aerodynamics: an integrated computational study.
    Liu H; Aono H
    Bioinspir Biomim; 2009 Mar; 4(1):015002. PubMed ID: 19258688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of corrugation of the dragonfly wing on gliding performance.
    Kim WK; Ko JH; Park HC; Byun D
    J Theor Biol; 2009 Oct; 260(4):523-30. PubMed ID: 19631665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.
    Vargas A; Mittal R; Dong H
    Bioinspir Biomim; 2008 Jun; 3(2):026004. PubMed ID: 18503106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of wing deformation on aerodynamic forces in hovering hoverflies.
    Du G; Sun M
    J Exp Biol; 2010 Jul; 213(Pt 13):2273-83. PubMed ID: 20543126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings.
    Azuma A; Okamoto M
    J Theor Biol; 2005 May; 234(1):67-78. PubMed ID: 15721036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bat flight generates complex aerodynamic tracks.
    Hedenström A; Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR
    Science; 2007 May; 316(5826):894-7. PubMed ID: 17495171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2691-704. PubMed ID: 19648414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of advance ratio on the aerodynamics of revolving wings.
    Dickson WB; Dickinson MH
    J Exp Biol; 2004 Nov; 207(Pt 24):4269-81. PubMed ID: 15531648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerodynamic characteristics of flying fish in gliding flight.
    Park H; Choi H
    J Exp Biol; 2010 Oct; 213(Pt 19):3269-79. PubMed ID: 20833919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.