BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 1908824)

  • 1. Effects of activated macrophages on Mycobacterium leprae.
    Ramasesh N; Adams LB; Franzblau SG; Krahenbuhl JL
    Infect Immun; 1991 Sep; 59(9):2864-9. PubMed ID: 1908824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical optima for metabolism of Mycobacterium leprae.
    Franzblau SG; Harris EB
    J Clin Microbiol; 1988 Jun; 26(6):1124-9. PubMed ID: 3290244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competency of human-derived Mycobacterium leprae to use palmitic acid in the synthesis of phenolic glycolipid-I and phthiocerol dimycocerosate and to release CO2 in axenic culture.
    Shannon EJ; Harris EB; Haile-Mariam HS; Guebre-Xavier M; Frommel D
    Lepr Rev; 1992 Jun; 63(2):101-7. PubMed ID: 1640777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of Mycobacterium leprae in macrophages.
    Ramasesh N; Hastings RC; Krahenbuhl JL
    Infect Immun; 1987 May; 55(5):1203-6. PubMed ID: 3552993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations into the growth of Mycobacterium leprae in a medium with palmitic acid under different gaseous environments.
    Ishaque M; Sticht-Groh V
    Microbios; 1993; 75(304):171-9. PubMed ID: 8246810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of radiometric macrophage assay and fluorescein diacetate/ethidium bromide staining for evaluation of M. leprae viability.
    Harshan KV; Prasad HK; Chopra NK; Mishra RS; Gogiya P; Nath I
    Int J Lepr Other Mycobact Dis; 1987 Jun; 55(2):316-21. PubMed ID: 2439621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of metabolism and growth of Mycobacterium leprae by gamma irradiation.
    Adams LB; Soileau NA; Battista JR; Krahenbuhl JL
    Int J Lepr Other Mycobact Dis; 2000 Mar; 68(1):1-10. PubMed ID: 10834063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titration of numbers of human-derived Mycobacterium leprae required to progressively oxidize 14C-palmitic acid and release 14CO2.
    Shannon EJ; Frommel D; Guebre-Xabier M; Haile-Mariam HS
    Lepr Rev; 1994 Jun; 65(2):100-5. PubMed ID: 7968182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between macrophage activation and bactericidal function and Mycobacterium leprae antigen presentation in macrophages of leprosy patients and normal individuals.
    Desai SD; Birdi TJ; Antia NH
    Infect Immun; 1989 Apr; 57(4):1311-7. PubMed ID: 2494115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro model for the lepromatous leprosy granuloma: fate of Mycobacterium leprae from target macrophages after interaction with normal and activated effector macrophages.
    Hagge DA; Ray NA; Krahenbuhl JL; Adams LB
    J Immunol; 2004 Jun; 172(12):7771-9. PubMed ID: 15187161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae.
    Miyamoto Y; Mukai T; Matsuoka M; Kai M; Maeda Y; Makino M
    PLoS Negl Trop Dis; 2016 Aug; 10(8):e0004881. PubMed ID: 27479467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of phenolic glycolipid-I synthesis in extracellular Mycobacterium leprae as an indicator of antimicrobial activity.
    Harris EB; Franzblau SG; Hastings RC
    Int J Lepr Other Mycobact Dis; 1988 Dec; 56(4):588-91. PubMed ID: 3065422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy.
    Madigan CA; Cambier CJ; Kelly-Scumpia KM; Scumpia PO; Cheng TY; Zailaa J; Bloom BR; Moody DB; Smale ST; Sagasti A; Modlin RL; Ramakrishnan L
    Cell; 2017 Aug; 170(5):973-985.e10. PubMed ID: 28841420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational combination of peptides derived from different Mycobacterium leprae proteins improves sensitivity for immunodiagnosis of M. leprae infection.
    Geluk A; van der Ploeg J; Teles RO; Franken KL; Prins C; Drijfhout JW; Sarno EN; Sampaio EP; Ottenhoff TH
    Clin Vaccine Immunol; 2008 Mar; 15(3):522-33. PubMed ID: 18199740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of potassium tellurite and ATP content in Mycobacterium leprae.
    David HL; Rastogi N; Frehel C; Gheorghiu M
    Ann Microbiol (Paris); 1982; 133(1):129-39. PubMed ID: 7051925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ultraviolet light radiation on Mycobacterium leprae.
    Truman RW; Gillis TP
    Int J Lepr Other Mycobact Dis; 2000 Mar; 68(1):11-7. PubMed ID: 10834064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical trial of sparfloxacin for lepromatous leprosy.
    Chan GP; Garcia-Ignacio BY; Chavez VE; Livelo JB; Jimenez CL; Parrilla ML; Franzblau SG
    Antimicrob Agents Chemother; 1994 Jan; 38(1):61-5. PubMed ID: 8141581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro effects of antimicrobial agents on Mycobacterium leprae in mouse peritoneal macrophages.
    Ramasesh N; Krahenbuhl JL; Hastings RC
    Antimicrob Agents Chemother; 1989 May; 33(5):657-62. PubMed ID: 2665640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the viability of Mycobacterium leprae by the fluorescein diacetate/ethidium bromide staining technique.
    Palomino JC; Falconi E; Marin D; Guerra H
    Indian J Lepr; 1991; 63(2):203-8. PubMed ID: 1723741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of purification and fluorescent staining on viability of Mycobacterium leprae.
    Lahiri R; Randhawa B; Krahenbuhl JL
    Int J Lepr Other Mycobact Dis; 2005 Sep; 73(3):194-202. PubMed ID: 16830641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.