BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19088310)

  • 1. Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis.
    Ruas-Madiedo P; Gueimonde M; Arigoni F; de los Reyes-Gavilán CG; Margolles A
    Appl Environ Microbiol; 2009 Feb; 75(4):1204-7. PubMed ID: 19088310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of Bifidobacterium animalis RH, a probiotic bacterium producing exopolysaccharides.
    Liu L; Qin Y; Wang Y; Li H; Shang N; Li P
    J Biotechnol; 2014 Nov; 189():86-7. PubMed ID: 25242662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach.
    Sánchez B; Champomier-Vergès MC; Stuer-Lauridsen B; Ruas-Madiedo P; Anglade P; Baraige F; de los Reyes-Gavilán CG; Johansen E; Zagorec M; Margolles A
    Appl Environ Microbiol; 2007 Nov; 73(21):6757-67. PubMed ID: 17827318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bile-inducible efflux transporter from Bifidobacterium longum NCC2705, conferring bile resistance.
    Gueimonde M; Garrigues C; van Sinderen D; de los Reyes-Gavilán CG; Margolles A
    Appl Environ Microbiol; 2009 May; 75(10):3153-60. PubMed ID: 19304838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile.
    Ruiz L; Sánchez B; Ruas-Madiedo P; de Los Reyes-Gavilán CG; Margolles A
    FEMS Microbiol Lett; 2007 Sep; 274(2):316-22. PubMed ID: 17651391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts.
    Candela M; Centanni M; Fiori J; Biagi E; Turroni S; Orrico C; Bergmann S; Hammerschmidt S; Brigidi P
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1609-1618. PubMed ID: 20167618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the effects of exposure to environmental stress on some functional properties of Bifidobacterium animalis ssp. lactis.
    Amund OD; Ouoba LI; Sutherland JP; Ghoddusi HB
    Benef Microbes; 2014 Dec; 5(4):461-9. PubMed ID: 25097108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures.
    Salazar N; Ruas-Madiedo P; Kolida S; Collins M; Rastall R; Gibson G; de Los Reyes-Gavilán CG
    Int J Food Microbiol; 2009 Nov; 135(3):260-7. PubMed ID: 19735956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the ropy phenotype of the exopolysaccharide-producing strain Bifidobacterium animalis subsp. lactis A1dOxR.
    Hidalgo-Cantabrana C; Sánchez B; Moine D; Berger B; de Los Reyes-Gavilán CG; Gueimonde M; Margolles A; Ruas-Madiedo P
    Appl Environ Microbiol; 2013 Jun; 79(12):3870-4. PubMed ID: 23584772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster.
    Leivers S; Hidalgo-Cantabrana C; Robinson G; Margolles A; Ruas-Madiedo P; Laws AP
    Carbohydr Res; 2011 Dec; 346(17):2710-7. PubMed ID: 22000767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov.
    Masco L; Ventura M; Zink R; Huys G; Swings J
    Int J Syst Evol Microbiol; 2004 Jul; 54(Pt 4):1137-1143. PubMed ID: 15280282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics of Bifidobacterium animalis subsp. lactis reveals a strict monophyletic bifidobacterial taxon.
    Milani C; Duranti S; Lugli GA; Bottacini F; Strati F; Arioli S; Foroni E; Turroni F; van Sinderen D; Ventura M
    Appl Environ Microbiol; 2013 Jul; 79(14):4304-15. PubMed ID: 23645200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics.
    Hidalgo-Cantabrana C; Sánchez B; Álvarez-Martín P; López P; Martínez-Álvarez N; Delley M; Martí M; Varela E; Suárez A; Antolín M; Guarner F; Berger B; Ruas-Madiedo P; Margolles A
    Appl Environ Microbiol; 2015 Dec; 81(23):7960-8. PubMed ID: 26362981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp. longum CRC 002.
    Audy J; Labrie S; Roy D; LaPointe G
    Microbiology (Reading); 2010 Mar; 156(Pt 3):653-664. PubMed ID: 19850611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a growth medium suitable for exopolysaccharide production and structural characterisation by Bifidobacterium animalis ssp. lactis AD011.
    Alhudhud M; Humphreys P; Laws A
    J Microbiol Methods; 2014 May; 100():93-8. PubMed ID: 24632517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of exopolysaccharides produced by Bifidobacterium longum NB667 and its cholate-resistant derivative strain IPLA B667dCo.
    Salazar N; Ruas-Madiedo P; Prieto A; Calle LP; de Los Reyes-Gavilán CG
    J Agric Food Chem; 2012 Feb; 60(4):1028-35. PubMed ID: 22229884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes.
    Turroni S; Bendazzoli C; Dipalo SC; Candela M; Vitali B; Gotti R; Brigidi P
    Appl Environ Microbiol; 2010 Aug; 76(16):5609-20. PubMed ID: 20601517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria.
    Rios-Covian D; Cuesta I; Alvarez-Buylla JR; Ruas-Madiedo P; Gueimonde M; de Los Reyes-Gavilán CG
    BMC Microbiol; 2016 Jul; 16(1):150. PubMed ID: 27418149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205.
    Prasanna PH; Bell A; Grandison AS; Charalampopoulos D
    Carbohydr Polym; 2012 Sep; 90(1):533-40. PubMed ID: 24751074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk.
    Alp G; Aslim B
    Anaerobe; 2010 Apr; 16(2):101-5. PubMed ID: 19576995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.