These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19088317)

  • 21. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
    Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI
    BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis.
    Hao G; Burr TJ
    J Bacteriol; 2006 Mar; 188(6):2173-83. PubMed ID: 16513747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies.
    Gao M; Coggin A; Yagnik K; Teplitski M
    PLoS One; 2012; 7(8):e42611. PubMed ID: 22912712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti.
    Baumgardt K; Šmídová K; Rahn H; Lochnit G; Robledo M; Evguenieva-Hackenberg E
    RNA Biol; 2016 May; 13(5):486-99. PubMed ID: 26588798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti.
    Charoenpanich P; Meyer S; Becker A; McIntosh M
    J Bacteriol; 2013 Jul; 195(14):3224-36. PubMed ID: 23687265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation.
    Luo L; Yao SY; Becker A; Rüberg S; Yu GQ; Zhu JB; Cheng HP
    J Bacteriol; 2005 Jul; 187(13):4562-72. PubMed ID: 15968067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.
    Gao M; Chen H; Eberhard A; Gronquist MR; Robinson JB; Rolfe BG; Bauer WD
    J Bacteriol; 2005 Dec; 187(23):7931-44. PubMed ID: 16291666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GGDEF and EAL proteins play different roles in the control of Sinorhizobium meliloti growth, motility, exopolysaccharide production, and competitive nodulation on host alfalfa.
    Wang Y; Xu J; Chen A; Wang Y; Zhu J; Yu G; Xu L; Luo L
    Acta Biochim Biophys Sin (Shanghai); 2010 Jun; 42(6):410-7. PubMed ID: 20539941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR.
    Gao M; Tang M; Guerich L; Salas-Gonzalez I; Teplitski M
    Environ Microbiol Rep; 2015 Feb; 7(1):148-54. PubMed ID: 25382642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility.
    Amaya-Gómez CV; Hirsch AM; Soto MJ
    BMC Microbiol; 2015 Mar; 15():58. PubMed ID: 25887945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of two quorum-sensing systems in Sinorhizobium meliloti.
    Marketon MM; González JE
    J Bacteriol; 2002 Jul; 184(13):3466-75. PubMed ID: 12057940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti.
    Nogales J; Bernabéu-Roda L; Cuéllar V; Soto MJ
    J Bacteriol; 2012 Apr; 194(8):2027-35. PubMed ID: 22328673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inositol catabolism, a key pathway in sinorhizobium meliloti for competitive host nodulation.
    Kohler PR; Zheng JY; Schoffers E; Rossbach S
    Appl Environ Microbiol; 2010 Dec; 76(24):7972-80. PubMed ID: 20971862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of trehalose biosynthesis for Sinorhizobium meliloti Osmotolerance and nodulation of Alfalfa roots.
    Domínguez-Ferreras A; Soto MJ; Pérez-Arnedo R; Olivares J; Sanjuán J
    J Bacteriol; 2009 Dec; 191(24):7490-9. PubMed ID: 19837796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis.
    Wells DH; Long SR
    Mol Microbiol; 2002 Mar; 43(5):1115-27. PubMed ID: 11918800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
    Glenn SA; Gurich N; Feeney MA; González JE
    J Bacteriol; 2007 Oct; 189(19):7077-88. PubMed ID: 17644606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular Stoichiometry of Methyl-Accepting Chemotaxis Proteins in Sinorhizobium meliloti.
    Zatakia HM; Arapov TD; Meier VM; Scharf BE
    J Bacteriol; 2018 Mar; 200(6):. PubMed ID: 29263102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway.
    de las Nieves Peltzer M; Roques N; Poinsot V; Aguilar OM; Batut J; Capela D
    Mol Plant Microbe Interact; 2008 Sep; 21(9):1232-41. PubMed ID: 18700827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The katA catalase gene is regulated by OxyR in both free-living and symbiotic Sinorhizobium meliloti.
    Jamet A; Kiss E; Batut J; Puppo A; Hérouart D
    J Bacteriol; 2005 Jan; 187(1):376-81. PubMed ID: 15601722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strigolactones in the Rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants.
    Peláez-Vico MA; Bernabéu-Roda L; Kohlen W; Soto MJ; López-Ráez JA
    Plant Sci; 2016 Apr; 245():119-27. PubMed ID: 26940496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.