BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19088335)

  • 1. Gating of aqùaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays.
    Kim YX; Steudle E
    J Exp Bot; 2009; 60(2):547-56. PubMed ID: 19088335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays.
    Kim YX; Steudle E
    J Exp Bot; 2007; 58(15-16):4119-29. PubMed ID: 18065766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration.
    Ehlert C; Maurel C; Tardieu F; Simonneau T
    Plant Physiol; 2009 Jun; 150(2):1093-104. PubMed ID: 19369594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative gating of water channels (aquaporins) in corn roots.
    Ye Q; Steudle E
    Plant Cell Environ; 2006 Apr; 29(4):459-70. PubMed ID: 17080599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach.
    Parent B; Hachez C; Redondo E; Simonneau T; Chaumont F; Tardieu F
    Plant Physiol; 2009 Apr; 149(4):2000-12. PubMed ID: 19211703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2.
    Wan X; Steudle E; Hartung W
    J Exp Bot; 2004 Feb; 55(396):411-22. PubMed ID: 14739264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Relationship between Turgor Pressure Change and Cell Hydraulics of Midrib Parenchyma Cells in the Leaves of Zea mays.
    Kim YX; Stumpf B; Sung J; Lee SJ
    Cells; 2018 Oct; 7(10):. PubMed ID: 30360453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation.
    Hachez C; Heinen RB; Draye X; Chaumont F
    Plant Mol Biol; 2008 Nov; 68(4-5):337-53. PubMed ID: 18622732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension.
    Rodríguez AA; Grunberg KA; Taleisnik EL
    Plant Physiol; 2002 Aug; 129(4):1627-32. PubMed ID: 12177475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions.
    Marulanda A; Azcón R; Chaumont F; Ruiz-Lozano JM; Aroca R
    Planta; 2010 Jul; 232(2):533-43. PubMed ID: 20499084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.
    Hu X; Jiang M; Zhang J; Zhang A; Lin F; Tan M
    New Phytol; 2007; 173(1):27-38. PubMed ID: 17176391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells.
    Przedpelska-Wasowicz EM; Wierzbicka M
    Protoplasma; 2011 Oct; 248(4):663-71. PubMed ID: 20960016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings.
    Jiang M; Zhang J
    Free Radic Res; 2002 Sep; 36(9):1001-15. PubMed ID: 12448826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress.
    Hu X; Zhang A; Zhang J; Jiang M
    Plant Cell Physiol; 2006 Nov; 47(11):1484-95. PubMed ID: 16990290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity.
    Rodríguez AA; Córdoba AR; Ortega L; Taleisnik E
    J Exp Bot; 2004 Jun; 55(401):1383-90. PubMed ID: 15155779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings.
    Menezes-Benavente L; Kernodle SP; Margis-Pinheiro M; Scandalios JG
    Redox Rep; 2004; 9(1):29-36. PubMed ID: 15035825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots.
    Aroca R; Amodeo G; Fernández-Illescas S; Herman EM; Chaumont F; Chrispeels MJ
    Plant Physiol; 2005 Jan; 137(1):341-53. PubMed ID: 15591439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.
    Jiang M; Zhang J
    Plant Cell Physiol; 2001 Nov; 42(11):1265-73. PubMed ID: 11726712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ytterbium increases transmembrane water transport in Zea mays roots via aquaporin modulation.
    Vorob'ev VN; Sibgatullin TA; Sterkhova KA; Alexandrov EA; Gogolev YV; Timofeeva OA; Gorshkov VY; Chevela VV
    Biometals; 2019 Dec; 32(6):901-908. PubMed ID: 31587124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity.
    Bastías E; Fernández-García N; Carvajal M
    Plant Biol (Stuttg); 2004 Jul; 6(4):415-21. PubMed ID: 15248124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.