BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19088393)

  • 1. A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements.
    Banerjee B; Roy D; Vasu RM
    Phys Med Biol; 2009 Jan; 54(2):285-305. PubMed ID: 19088393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear modulus reconstruction in dynamic elastography: time harmonic case.
    Park E; Maniatty AM
    Phys Med Biol; 2006 Aug; 51(15):3697-721. PubMed ID: 16861775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of shear modulus distribution in soft tissue from strain distribution.
    Sumi C; Suzuki A; Nakayama K
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):193-202. PubMed ID: 7868147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust numerical solution to reconstruct a globally relative shear modulus distribution from strain measurements.
    Sumi C; Nakayama K
    IEEE Trans Med Imaging; 1998 Jun; 17(3):419-28. PubMed ID: 9735905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study.
    Ou JJ; Ong RE; Yankeelov TE; Miga MI
    Phys Med Biol; 2008 Jan; 53(1):147-63. PubMed ID: 18182693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algebraic Helmholtz inversion in planar magnetic resonance elastography.
    Papazoglou S; Hamhaber U; Braun J; Sack I
    Phys Med Biol; 2008 Jun; 53(12):3147-58. PubMed ID: 18495979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A signal/noise analysis of quasi-static MR elastography.
    Bishop J; Samani A; Sciarretta J; Luginbuhl C; Plewes DB
    IEEE Trans Med Imaging; 2001 Nov; 20(11):1183-7. PubMed ID: 11700744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principal component analysis of shear strain effects.
    Chen H; Varghese T
    Ultrasonics; 2009 May; 49(4-5):472-83. PubMed ID: 19201435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction.
    Baghani A; Salcudean S; Honarvar M; Sahebjavaher RS; Rohling R; Sinkus R
    IEEE Trans Med Imaging; 2011 Aug; 30(8):1555-65. PubMed ID: 21813354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic filtering approach to recover strain images from quasi-static ultrasound elastography.
    Lu M; Wu D; Lin WH; Li W; Zhang H; Huang W
    Biomed Eng Online; 2014 Feb; 13():15. PubMed ID: 24521481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
    Montaldo G; Tanter M; Bercoff J; Benech N; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):489-506. PubMed ID: 19411209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional transient and harmonic shear-wave scattering by a soft cylinder for dynamic vascular elastography.
    Henni AH; Schmitt C; Cloutier G
    J Acoust Soc Am; 2008 Oct; 124(4):2394-405. PubMed ID: 19062877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient implementations of a pseudodynamical stochastic filtering strategy for static elastography.
    Banerjee B; Roy D; Vasu RM
    Med Phys; 2009 Aug; 36(8):3470-6. PubMed ID: 19746780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.
    Kalyanam S; Yapp RD; Insana MF
    J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver.
    Clarke EC; Cheng S; Green M; Sinkus R; Bilston LE
    J Biomech; 2011 Sep; 44(13):2461-5. PubMed ID: 21762921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructive elasticity imaging for large deformations.
    Skovoroda AR; Lubinski LA; Emelianov SY; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):523-35. PubMed ID: 18238453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of strain-based and model-based modulus elastography.
    Doyley MM; Srinivasan S; Pendergrass SA; Wu Z; Ophir J
    Ultrasound Med Biol; 2005 Jun; 31(6):787-802. PubMed ID: 15936495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.