These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19088415)

  • 1. Alleviation of heat strain by cooling different body areas during red pepper harvest work at WBGT 33 degrees C.
    Choi JW; Kim MJ; Lee JY
    Ind Health; 2008 Dec; 46(6):620-8. PubMed ID: 19088415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the Physiological and Perceptual Responses of Wearing a Newly Designed Cooling Vest for Construction Workers.
    Zhao Y; Yi W; Chan APC; Wong FKW; Yam MCH
    Ann Work Expo Health; 2017 Aug; 61(7):883-901. PubMed ID: 28810683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat stress reduction of helicopter crew wearing a ventilated vest.
    Reffeltrath PA
    Aviat Space Environ Med; 2006 May; 77(5):545-50. PubMed ID: 16708535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventilated vest and tolerance for intermittent exercise in hot, dry conditions with military clothing.
    Barwood MJ; Newton PS; Tipton MJ
    Aviat Space Environ Med; 2009 Apr; 80(4):353-9. PubMed ID: 19378904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.
    Zhao Y; Yi W; Chan APC; Chan DWM
    J Therm Biol; 2017 Oct; 69():311-318. PubMed ID: 29037399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat strain attenuation while wearing NBC clothing: dry-ice vest compared to water spray.
    Heled Y; Epstein Y; Moran DS
    Aviat Space Environ Med; 2004 May; 75(5):391-6. PubMed ID: 15152890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological tolerance to uncompensated heat stress in soldiers: effects of various types of body cooling systems.
    Jovanović D; Karkalić R; Zeba S; Pavlović M; Radaković SS
    Vojnosanit Pregl; 2014 Mar; 71(3):259-64. PubMed ID: 24697012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brief in-play cooling breaks reduce thermal strain during football in hot conditions.
    Chalmers S; Siegler J; Lovell R; Lynch G; Gregson W; Marshall P; Jay O
    J Sci Med Sport; 2019 Aug; 22(8):912-917. PubMed ID: 31151878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel vest with dual functions for firefighters: combined effects of body cooling and cold fluid ingestion on the alleviation of heat strain.
    Kim DH; Bae GT; Lee JY
    Ind Health; 2020 Apr; 58(2):91-106. PubMed ID: 31257232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice cooling vest on tolerance for exercise under uncompensable heat stress.
    Kenny GP; Schissler AR; Stapleton J; Piamonte M; Binder K; Lynn A; Lan CQ; Hardcastle SG
    J Occup Environ Hyg; 2011 Aug; 8(8):484-91. PubMed ID: 21756138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of air-filled vest on exercise-heat strain when wearing ballistic protection.
    Adams JD; McDermott BP; Ridings CB; Mainer LL; Ganio MS; Kavouras SA
    Ann Occup Hyg; 2014 Oct; 58(8):1057-64. PubMed ID: 25000936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophysiological and Perceptual Responses of Amateur Healthcare Workers: Impacts of Ambient Condition, Inner-Garment Insulation and Personal Cooling Strategy.
    Zhao Y; Su M; Meng X; Liu J; Wang F
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearing a Cooling Vest During Half-Time Improves Intermittent Exercise in the Heat.
    Chaen Y; Onitsuka S; Hasegawa H
    Front Physiol; 2019; 10():711. PubMed ID: 31275154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical pre-cooling methods for occupational heat exposure.
    Watkins ER; Hayes M; Watt P; Richardson AJ
    Appl Ergon; 2018 Jul; 70():26-33. PubMed ID: 29866317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Head cooling is desirable but not essential for preventing heat strain in pilots.
    Frim J
    Aviat Space Environ Med; 1989 Nov; 60(11):1056-62. PubMed ID: 2818395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a personal ambient ventilation system on physiological strain during heat stress wearing a ballistic vest.
    Hadid A; Yanovich R; Erlich T; Khomenok G; Moran DS
    Eur J Appl Physiol; 2008 Sep; 104(2):311-9. PubMed ID: 18415120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active versus passive cooling during work in warm environments while wearing firefighting protective clothing.
    Selkirk GA; McLellan TM; Wong J
    J Occup Environ Hyg; 2004 Aug; 1(8):521-31. PubMed ID: 15238305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent wetting clothing as a cooling strategy for body heat strain alleviation of vulnerable populations during a severe heatwave incident.
    Song W; Wang F; Zhang C
    J Therm Biol; 2019 Jan; 79():33-41. PubMed ID: 30612683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing.
    Cadarette BS; Cheuvront SN; Kolka MA; Stephenson LA; Montain SJ; Sawka MN
    Ergonomics; 2006 Feb; 49(2):209-19. PubMed ID: 16484146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat strain reduction by ice-based and vapor compression liquid cooling systems with a toxic agent protective uniform.
    Cadarette BS; Levine L; Kolka MA; Proulx GN; Correa MM; Sawka MN
    Aviat Space Environ Med; 2002 Jul; 73(7):665-72. PubMed ID: 12137102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.