These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19088978)

  • 1. B-N compounds for chemical hydrogen storage.
    Hamilton CW; Baker RT; Staubitz A; Manners I
    Chem Soc Rev; 2009 Jan; 38(1):279-93. PubMed ID: 19088978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonia-borane: the hydrogen source par excellence?
    Stephens FH; Pons V; Tom Baker R
    Dalton Trans; 2007 Jul; (25):2613-26. PubMed ID: 17576485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of ammonia borane from spent fuel materials.
    Summerscales OT; Gordon JC
    Dalton Trans; 2013 Jul; 42(28):10075-84. PubMed ID: 23571860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.
    Yang J; Sudik A; Wolverton C; Siegel DJ
    Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation.
    Sanyal U; Demirci UB; Jagirdar BR; Miele P
    ChemSusChem; 2011 Dec; 4(12):1731-9. PubMed ID: 22069163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen storage in metal-organic frameworks.
    Murray LJ; Dincă M; Long JR
    Chem Soc Rev; 2009 May; 38(5):1294-314. PubMed ID: 19384439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonia borane hydrogen release in ionic liquids.
    Himmelberger DW; Alden LR; Bluhm ME; Sneddon LG
    Inorg Chem; 2009 Oct; 48(20):9883-9. PubMed ID: 19769390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-rich boron-containing materials for hydrogen storage.
    Wang P; Kang XD
    Dalton Trans; 2008 Oct; (40):5400-13. PubMed ID: 19082020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-capacity hydrogen storage in lithium and sodium amidoboranes.
    Xiong Z; Yong CK; Wu G; Chen P; Shaw W; Karkamkar A; Autrey T; Jones MO; Johnson SR; Edwards PP; David WI
    Nat Mater; 2008 Feb; 7(2):138-41. PubMed ID: 18157135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New isoreticular metal-organic framework materials for high hydrogen storage capacity.
    Sagara T; Ortony J; Ganz E
    J Chem Phys; 2005 Dec; 123(21):214707. PubMed ID: 16356061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrazine borane: synthesis, characterization, and application prospects in chemical hydrogen storage.
    Moury R; Moussa G; Demirci UB; Hannauer J; Bernard S; Petit E; van der Lee A; Miele P
    Phys Chem Chem Phys; 2012 Feb; 14(5):1768-77. PubMed ID: 22166916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic methanolysis of hydrazine borane: a new and efficient hydrogen generation system under mild conditions.
    Karahan S; Zahmakıran M; Özkar S
    Dalton Trans; 2012 Apr; 41(16):4912-8. PubMed ID: 22451008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ti-substituted boranes as hydrogen storage materials: a computational quest for the ideal combination of stable electronic structure and optimal hydrogen uptake.
    Zhang CG; Zhang R; Wang ZX; Zhou Z; Zhang SB; Chen Z
    Chemistry; 2009 Jun; 15(24):5910-9. PubMed ID: 19472230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light metal hydrides and complex hydrides for hydrogen storage.
    Schüth F; Bogdanović B; Felderhoff M
    Chem Commun (Camb); 2004 Oct; (20):2249-58. PubMed ID: 15489969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage.
    Yao X; Wu C; Du A; Lu GQ; Cheng H; Smith SC; Zou J; He Y
    J Phys Chem B; 2006 Jun; 110(24):11697-703. PubMed ID: 16800465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the NH2 substituent on NH3: hydrazine as an alternative for ammonia in hydrogen release in the presence of boranes and alanes.
    Vinh-Son N; Swinnen S; Matus MH; Nguyen MT; Dixon DA
    Phys Chem Chem Phys; 2009 Aug; 11(30):6339-44. PubMed ID: 19809664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system.
    Ozolins V; Majzoub EH; Wolverton C
    J Am Chem Soc; 2009 Jan; 131(1):230-7. PubMed ID: 19072157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide as an ideal substrate for hydrogen storage.
    Wang L; Lee K; Sun YY; Lucking M; Chen Z; Zhao JJ; Zhang SB
    ACS Nano; 2009 Oct; 3(10):2995-3000. PubMed ID: 19856979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage capacity of catalytically grown carbon nanofibers.
    Rzepka M; Bauer E; Reichenauer G; Schliermann T; Bernhardt B; Bohmhammel K; Henneberg E; Knoll U; Maneck HE; Braue W
    J Phys Chem B; 2005 Aug; 109(31):14979-89. PubMed ID: 16852897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of amine-borane adducts as potential hydrogen storage materials with reversible hydrogen uptake.
    Staubitz A; Besora M; Harvey JN; Manners I
    Inorg Chem; 2008 Jul; 47(13):5910-8. PubMed ID: 18500797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.