These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19088981)

  • 41. Swain-Scott Relationships for Nucleophile Addition to Ring-Substituted Phenonium Ions.
    Tsuji Y; Richard JP
    Can J Chem; 2015; 93(4):428-434. PubMed ID: 26843657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical study of the orientation rules in photonucleophilic aromatic substitutions.
    Pintér B; De Proft F; Veszprémi T; Geerlings P
    J Org Chem; 2008 Feb; 73(4):1243-52. PubMed ID: 18215057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Designing an appropriate computational model for DNA nucleoside hydrolysis: a case study of 2'-deoxyuridine.
    Przybylski JL; Wetmore SD
    J Phys Chem B; 2009 May; 113(18):6533-42. PubMed ID: 19358541
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nucleophilic identity substitution reactions. The reaction between hydrogen fluoride and protonated alkyl fluorides.
    Laerdahl JK; Civcir PU; Bache-Andreassen L; Uggerud E
    Org Biomol Chem; 2006 Jan; 4(1):135-41. PubMed ID: 16358008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Does the Cl + CH
    Krotos L; Czakó G
    J Phys Chem A; 2017 Dec; 121(49):9415-9420. PubMed ID: 29161040
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microhydration effects on a model S(N)2 reaction in a nonpolar solvent.
    Nelson KV; Benjamin I
    J Chem Phys; 2009 May; 130(19):194502. PubMed ID: 19466838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of substituents on the stabilities of phosphonyl radicals and their hydroxyphosphinyl tautomers.
    Krenske EH; Coote ML
    J Phys Chem A; 2007 Aug; 111(33):8229-40. PubMed ID: 17661450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relative Gibbs energies in solution through continuum models: effect of the loss of translational degrees of freedom in bimolecular reactions on Gibbs energy barriers.
    Ardura D; López R; Sordo TL
    J Phys Chem B; 2005 Dec; 109(49):23618-23. PubMed ID: 16375339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical analysis of gas-phase front-side attack identity S(N)2(C) and S(N)2(Si) reactions with retention of configuration.
    Yang ZZ; Ding YL; Zhao DX
    J Phys Chem A; 2009 May; 113(18):5432-45. PubMed ID: 19354223
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-reactivity correlations in nucleophilic substitution reactions of Y-substituted phenyl X-substituted benzoates with anionic and neutral nucleophiles.
    Um IH; Lee JY; Fujio M; Tsuno Y
    Org Biomol Chem; 2006 Aug; 4(15):2979-85. PubMed ID: 16855748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorus-centered ion-molecule reactions: benchmark
    Ballay B; Szűcs T; Papp D; Czakó G
    Phys Chem Chem Phys; 2023 Nov; 25(42):28925-28940. PubMed ID: 37855143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spin-flip reaction of Re + CH4--a relativistic density functional theory investigation.
    Li J; Chen XY; Qiu YX; Wang SG
    J Phys Chem A; 2009 Jul; 113(30):8471-7. PubMed ID: 19572757
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting regioselectivity in nucleophilic aromatic substitution.
    Liljenberg M; Brinck T; Herschend B; Rein T; Tomasi S; Svensson M
    J Org Chem; 2012 Apr; 77(7):3262-9. PubMed ID: 22384935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct studies on 5-coordinate intermediates formed during substitution at tetrahedral Fe sites: role of bound nucleophile in labilisation of leaving group.
    Garrett B; Henderson RA
    Dalton Trans; 2007 Aug; (31):3435-9. PubMed ID: 17664981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of nucleophilic substitution reactions of methylated hydroxylamines with bis(2,4-dinitrophenyl)phosphate. Mass spectrometric identification of key intermediates.
    Domingos JB; Longhinotti E; Brandão TA; Bunton CA; Santos LS; Eberlin MN; Nome F
    J Org Chem; 2004 Sep; 69(18):6024-33. PubMed ID: 15373487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reaction pathways and possible path bifurcation for the Schmidt reaction.
    Katori T; Itoh S; Sato M; Yamataka H
    J Am Chem Soc; 2010 Mar; 132(10):3413-22. PubMed ID: 20166731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The profound effect of fluorine substitution on the reactivity and regioselectivity of nucleophilic substitution reactions of strained heterocycles. A study of aziridine and its derivatives.
    Banks HD
    J Org Chem; 2006 Oct; 71(21):8089-97. PubMed ID: 17025297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of mixed substituents on the macrocyclic ring distortions of free base porphyrins and their metal complexes.
    Bhyrappa P; Arunkumar C; Varghese B
    Inorg Chem; 2009 May; 48(9):3954-65. PubMed ID: 19334709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-step and two-step spin-crossover iron(II) complexes of ((2-methylimidazol-4-yl)methylidene)histamine.
    Sato T; Nishi K; Iijima S; Kojima M; Matsumoto N
    Inorg Chem; 2009 Aug; 48(15):7211-29. PubMed ID: 19722691
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of ruthenium catalysts for the enantioselective synthesis of P-stereogenic phosphines via nucleophilic phosphido intermediates.
    Chan VS; Chiu M; Bergman RG; Toste FD
    J Am Chem Soc; 2009 Apr; 131(16):6021-32. PubMed ID: 19338305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.