These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 19089001)
1. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. Liu C; Wang L Dalton Trans; 2009 Jan; (2):227-39. PubMed ID: 19089001 [TBL] [Abstract][Full Text] [Related]
5. Roles of metal ions in nucleases. Dupureur CM Curr Opin Chem Biol; 2008 Apr; 12(2):250-5. PubMed ID: 18261473 [TBL] [Abstract][Full Text] [Related]
6. Catalytic hydrolysis of DNA by metal ions and complexes. Sreedhara A; Cowan JA J Biol Inorg Chem; 2001 Apr; 6(4):337-47. PubMed ID: 11372193 [TBL] [Abstract][Full Text] [Related]
7. Metal complex-DNA interactions: from transcription inhibition to photoactivated cleavage. Boerner LJ; Zaleski JM Curr Opin Chem Biol; 2005 Apr; 9(2):135-44. PubMed ID: 15811797 [TBL] [Abstract][Full Text] [Related]
8. Catalytic metal ions and enzymatic processing of DNA and RNA. Palermo G; Cavalli A; Klein ML; Alfonso-Prieto M; Dal Peraro M; De Vivo M Acc Chem Res; 2015 Feb; 48(2):220-8. PubMed ID: 25590654 [TBL] [Abstract][Full Text] [Related]
10. An effective approach to artificial nucleases using copper(II) complexes bearing nucleobases. Wang JT; Xia Q; Zheng XH; Chen HY; Chao H; Mao ZW; Ji LN Dalton Trans; 2010 Feb; 39(8):2128-36. PubMed ID: 20148233 [TBL] [Abstract][Full Text] [Related]
11. Roles of exogenous divalent metals in the nucleolytic activity of Cu,Zn superoxide dismutase. Jiang W; Han Y; Pan Q; Shen T; Liu C J Inorg Biochem; 2007 Apr; 101(4):667-77. PubMed ID: 17292965 [TBL] [Abstract][Full Text] [Related]
12. Efficient and selective cleavage of RNA oligonucleotides by calix[4]arene-based synthetic metallonucleases. Cacciapaglia R; Casnati A; Mandolini L; Peracchi A; Reinhoudt DN; Salvio R; Sartori A; Ungaro R J Am Chem Soc; 2007 Oct; 129(41):12512-20. PubMed ID: 17880217 [TBL] [Abstract][Full Text] [Related]
13. Metal-free artificial nucleases based on simple oxime and hydroxylamine scaffolds. Fernandes L; Fischer FL; Ribeiro CW; Silveira GP; Sá MM; Nome F; Terenzi H Bioorg Med Chem Lett; 2008 Aug; 18(16):4499-502. PubMed ID: 18667311 [TBL] [Abstract][Full Text] [Related]
14. Macrocyclic lanthanide complexes as artificial nucleases and ribonucleases: effects of pH, metal ionic radii, number of coordinated water molecules, charge, and concentrations of the metal complexes. Chang CA; Wu BH; Kuan BY Inorg Chem; 2005 Sep; 44(19):6646-54. PubMed ID: 16156622 [TBL] [Abstract][Full Text] [Related]
18. Investigation of restriction enzyme cofactor requirements: a relationship between metal ion properties and sequence specificity. Bowen LM; Dupureur CM Biochemistry; 2003 Nov; 42(43):12643-53. PubMed ID: 14580211 [TBL] [Abstract][Full Text] [Related]
19. Molecular design of artificial hydrolytic nucleases and ribonucleases. Komiyama M; Inokawa T; Shiiba T; Takeda N; Yoshinari K; Yashiro M Nucleic Acids Symp Ser; 1993; (29):197-8. PubMed ID: 8247767 [TBL] [Abstract][Full Text] [Related]
20. Oxygen-independent photonuclease activity of a new iron(II) complex. de Souza B; Xavier FR; Peralta RA; Bortoluzzi AJ; Conte G; Gallardo H; Fischer FL; Bussi G; Terenzi H; Neves A Chem Commun (Camb); 2010 May; 46(19):3375-7. PubMed ID: 20428519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]