These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1908929)

  • 1. Double-labelling with rhodamine beads and biocytin: a technique for studying corticospinal and other projection neurons in vitro.
    Tseng GF; Parada I; Prince DA
    J Neurosci Methods; 1991 Apr; 37(2):121-31. PubMed ID: 1908929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study.
    Smith Y; Bolam JP
    Neuroscience; 1991; 44(1):45-73. PubMed ID: 1722893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR) -dextran amine by means of an acidic injection vehicle and antibodies against TMR.
    Kaneko T; Saeki K; Lee T; Mizuno N
    J Neurosci Methods; 1996 Apr; 65(2):157-65. PubMed ID: 8740593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal projection patterns following unilateral section of the cervical spinal cord in the newborn and juvenile macaque monkey.
    Galea MP; Darian-Smith I
    J Comp Neurol; 1997 May; 381(3):282-306. PubMed ID: 9133569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of connections between cortex and superior colliculus in vitro by the use of biocytin and HRP.
    Yousef T; Cardoso de Oliveira S; Hoffmann KP
    J Hirnforsch; 1995; 36(2):259-67. PubMed ID: 7615929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunofluorescence in situ hybridization (IFISH) in neurones retrogradely labelled with rhodamine latex microspheres.
    Senatorov VV; Trudeau VL; Hu B
    Brain Res Brain Res Protoc; 1997 Feb; 1(1):49-56. PubMed ID: 9385047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies.
    Ceranik K; Deng J; Heimrich B; Lübke J; Zhao S; Förster E; Frotscher M
    Eur J Neurosci; 1999 Dec; 11(12):4278-90. PubMed ID: 10594654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro formation of corticospinal synapses in an organotypic slice co-culture.
    Takuma H; Sakurai M; Kanazawa I
    Neuroscience; 2002; 109(2):359-70. PubMed ID: 11801371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast neuronal labeling in live tissue using a biocytin conjugated fluorescent probe.
    Harsløf M; Müller FC; Rohrberg J; Rekling JC
    J Neurosci Methods; 2015 Sep; 253():101-9. PubMed ID: 26079494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellularly labeled pyramidal neurons in the cortical areas projecting to the spinal cord. II. Intra- and juxta-columnar projection of pyramidal neurons to corticospinal neurons.
    Cho RH; Segawa S; Okamoto K; Mizuno A; Kaneko T
    Neurosci Res; 2004 Dec; 50(4):395-410. PubMed ID: 15567477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double- and triple-labeling of functionally characterized central neurons projecting to peripheral targets studied in vitro.
    Viana F; Gibbs L; Berger AJ
    Neuroscience; 1990; 38(3):829-41. PubMed ID: 1702883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of rat corticospinal neurons.
    Tseng GF; Prince DA
    J Comp Neurol; 1993 Sep; 335(1):92-108. PubMed ID: 8408775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocytin as a retrograde tracer in the mammalian visual system.
    Picanço-Diniz CW; Silveira LC; Yamada ES; Martin KA
    Braz J Med Biol Res; 1992; 25(1):57-62. PubMed ID: 1304945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrograde transport of sodium selenite and intracellular injection of micro-ruby: a combined method to describe the morphology of zinc-rich neurones.
    Miró-Bernié N; Sancho-Bielsa FJ; López-García C; Pérez-Clausell J
    J Neurosci Methods; 2003 Aug; 127(2):199-209. PubMed ID: 12906949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates.
    Horikawa K; Armstrong WE
    J Neurosci Methods; 1988 Aug; 25(1):1-11. PubMed ID: 3146670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of neonatal hemispherectomy on location and number of corticospinal neurons in the rat.
    Huttenlocher PR; Raichelson RM
    Brain Res Dev Brain Res; 1989 May; 47(1):59-69. PubMed ID: 2472235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular recording from dopamine neurons in the substantia nigra: double labelling for identification of projection site and morphological features.
    Lee TH; Ellinwood EH; Einstein G
    J Neurosci Methods; 1992 Jul; 43(2-3):119-27. PubMed ID: 1405739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three intracellular markers for combined electrophysiological, morphological and immunohistochemical analyses.
    Tasker JG; Hoffman NW; Dudek FE
    J Neurosci Methods; 1991 Jul; 38(2-3):129-43. PubMed ID: 1723776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminar and areal differences in the origin of the subcortical projection neurons of the rat somatosensory cortex.
    Killackey HP; Koralek KA; Chiaia NL; Rhodes RW
    J Comp Neurol; 1989 Apr; 282(3):428-45. PubMed ID: 2715391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat.
    Bennett BD; Bolam JP
    Neuroscience; 1994 Oct; 62(3):707-19. PubMed ID: 7870301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.