BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 19089588)

  • 1. Anaerobic degradation of citrate under sulfate reducing and methanogenic conditions.
    Gámez VM; Sierra-Alvarez R; Waltz RJ; Field JA
    Biodegradation; 2009 Jul; 20(4):499-510. PubMed ID: 19089588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor.
    Weijma J; Stams AJ; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2000 Feb; 67(3):354-63. PubMed ID: 10620266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2005 Dec; 92(7):810-9. PubMed ID: 16136594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing.
    Zhang L; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4123-32. PubMed ID: 19576610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors.
    Celis-García LB; Razo-Flores E; Monroy O
    Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms.
    Gutierrez O; Park D; Sharma KR; Yuan Z
    Water Res; 2009 May; 43(9):2549-57. PubMed ID: 19345393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors.
    Lenz M; Hullebusch ED; Hommes G; Corvini PF; Lens PN
    Water Res; 2008 Apr; 42(8-9):2184-94. PubMed ID: 18177686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments.
    Finke N; Jørgensen BB
    ISME J; 2008 Aug; 2(8):815-29. PubMed ID: 18309360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.
    Wu WM; Hickey RF; Zeikus JG
    Appl Environ Microbiol; 1991 Dec; 57(12):3438-49. PubMed ID: 1785921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea.
    Silva AJ; Hirasawa JS; Varesche MB; Foresti E; Zaiat M
    Anaerobe; 2006 Apr; 12(2):93-8. PubMed ID: 16701621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters.
    Chou HH; Huang JS; Chen WG; Ohara R
    Bioresour Technol; 2008 Nov; 99(17):8061-7. PubMed ID: 18448334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor.
    Weijma J; Gubbels F; Hulshoff Pol LW; Stams AJ; Lens P; Lettinga G
    Water Sci Technol; 2002; 45(10):75-80. PubMed ID: 12188580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction.
    Thabet OB; Bouallagui H; Cayol JL; Ollivier B; Fardeau ML; Hamdi M
    J Hazard Mater; 2009 Aug; 167(1-3):1133-40. PubMed ID: 19272702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode: electron balances.
    Parameswaran P; Torres CI; Lee HS; Krajmalnik-Brown R; Rittmann BE
    Biotechnol Bioeng; 2009 Jun; 103(3):513-23. PubMed ID: 19191353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of anaerobic lactate metabolism under biosulfidogenic conditions.
    Oyekola OO; van Hille RP; Harrison ST
    Water Res; 2009 Aug; 43(14):3345-54. PubMed ID: 19559456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.
    Hollingsworth J; Sierra-Alvarez R; Zhou M; Ogden KL; Field JA
    Chemosphere; 2005 Jun; 59(9):1219-28. PubMed ID: 15857633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of thermophilic anaerobic microbial consortia using fluorescence in situ hybridization (FISH).
    Domingues MR; Araujo JC; Varesche MB; Vazoller RF
    Water Sci Technol; 2002; 45(10):27-33. PubMed ID: 12188557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Chemosphere; 2006 Jan; 62(1):121-7. PubMed ID: 15936054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.