These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1908959)

  • 1. Effects of intra-axonal injection of Ca2+ buffers on evoked release and on facilitation in the crayfish neuromuscular junction.
    Hochner B; Parnas H; Parnas I
    Neurosci Lett; 1991 Apr; 125(2):215-8. PubMed ID: 1908959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses.
    Winslow JL; Duffy SN; Charlton MP
    J Neurophysiol; 1994 Oct; 72(4):1769-93. PubMed ID: 7823101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S; Brodwick MS; Bittner GD
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
    Qian SM; Delaney KR
    Brain Res; 1997 Oct; 771(2):259-70. PubMed ID: 9401746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction.
    Delaney K; Tank DW; Zucker RS
    J Neurosci; 1991 Sep; 11(9):2631-43. PubMed ID: 1679119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation.
    Matveev V; Bertram R; Sherman A
    J Neurophysiol; 2006 Dec; 96(6):3389-97. PubMed ID: 16971687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of increasing Ca2+ channel-vesicle separation on facilitation at the crayfish inhibitory neuromuscular junction.
    Allana TN; Lin JW
    Neuroscience; 2008 Jul; 154(4):1242-54. PubMed ID: 18541384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High CO2-bicarbonate buffer modifies GABAergic inhibitory effect at the crayfish neuromuscular synapse.
    Golan H; Barkai E; Grossman Y
    Brain Res; 1991 Dec; 567(1):149-52. PubMed ID: 1667744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic calcium-activated potassium channels and calcium channels at a crayfish neuromuscular junction.
    Blundon JA; Wright SN; Brodwick MS; Bittner GD
    J Neurophysiol; 1995 Jan; 73(1):178-89. PubMed ID: 7714563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic plasticity at crayfish neuromuscular junctions: presynaptic inhibition.
    Baxter DA; Bittner GD
    Synapse; 1991 Mar; 7(3):244-51. PubMed ID: 1882333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions.
    Zucker RS; Lara-Estrella LO
    J Gen Physiol; 1983 Mar; 81(3):355-72. PubMed ID: 6132958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.
    Rozov A; Burnashev N; Sakmann B; Neher E
    J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-activated potassium conductance in presynaptic terminals at the crayfish neuromuscular junction.
    Sivaramakrishnan S; Bittner GD; Brodwick MS
    J Gen Physiol; 1991 Dec; 98(6):1161-79. PubMed ID: 1723748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitation and delayed release at about 0 degree C at the frog neuromuscular junction: effects of calcium chelators, calcium transport inhibitors, and okadaic acid.
    Van der Kloot W; Molgó J
    J Neurophysiol; 1993 Mar; 69(3):717-29. PubMed ID: 8385191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockage of synaptic release by brief hyperpolarizing pulses in the neuromuscular junction of the crayfish.
    Arechiga H; Cannone A; Parnas H; Parnas I
    J Physiol; 1990 Nov; 430():119-33. PubMed ID: 1707963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction.
    Lin JW; Fu Q; Allana T
    J Neurophysiol; 2005 Jul; 94(1):377-86. PubMed ID: 15985697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotransmitter release and its facilitation in crayfish. VII. Another voltage dependent process beside Ca entry controls the time course of phasic release.
    Parnas H; Dudel J; Parnas I
    Pflugers Arch; 1986 Feb; 406(2):121-30. PubMed ID: 2421235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mobile buffers on facilitation: experimental and computational studies.
    Tang Y; Schlumpberger T; Kim T; Lueker M; Zucker RS
    Biophys J; 2000 Jun; 78(6):2735-51. PubMed ID: 10827959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic membrane potential and transmitter release at the crayfish neuromuscular junction.
    Wojtowicz JM; Atwood HL
    J Neurophysiol; 1984 Jul; 52(1):99-113. PubMed ID: 6086856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual Ca2+ and short-term synaptic plasticity.
    Kamiya H; Zucker RS
    Nature; 1994 Oct; 371(6498):603-6. PubMed ID: 7935792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.