These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19089682)

  • 41. A bilinear stress-strain relationship for arteries.
    Zhang W; Kassab GS
    Biomaterials; 2007 Feb; 28(6):1307-15. PubMed ID: 17112583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards model-based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation.
    Ubbink SW; Bovendeerd PH; Delhaas T; Arts T; van de Vosse FN
    Med Image Anal; 2006 Aug; 10(4):632-41. PubMed ID: 16723270
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Constitutive formulation and analysis of heel pad tissues mechanics.
    Natali AN; Fontanella CG; Carniel EL
    Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimating material parameters of human skin in vivo.
    Kvistedal YA; Nielsen PM
    Biomech Model Mechanobiol; 2009 Feb; 8(1):1-8. PubMed ID: 18040732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling the mechanical response of in vivo human skin under a rich set of deformations.
    Flynn C; Taberner A; Nielsen P
    Ann Biomed Eng; 2011 Jul; 39(7):1935-46. PubMed ID: 21394556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation.
    Cox MA; Gawlitta D; Driessen NJ; Oomens CW; Baaijens FP
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):585-92. PubMed ID: 19230150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A transversely isotropic constitutive model of excised guinea pig spinal cord white matter.
    Galle B; Ouyang H; Shi R; Nauman E
    J Biomech; 2010 Oct; 43(14):2839-43. PubMed ID: 20832804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of material characterizations in frequently used constitutive models of ligaments.
    Wan C; Hao Z; Wen S
    Int J Numer Method Biomed Eng; 2014 Jun; 30(6):605-15. PubMed ID: 24353251
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Orthotropic active strain models for the numerical simulation of cardiac biomechanics.
    Rossi S; Ruiz-Baier R; Pavarino LF; Quarteroni A
    Int J Numer Method Biomed Eng; 2012; 28(6-7):761-88. PubMed ID: 25364850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating full-field deformation of planar soft tissue under simple-shear tests.
    Guo DL; Chen BS; Liou NS
    J Biomech; 2007; 40(5):1165-70. PubMed ID: 17137584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three dimensional electromechanical model of porcine heart with penetrating wound injury.
    Usyk T; Kerckhoffs R
    Stud Health Technol Inform; 2005; 111():568-73. PubMed ID: 15718799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Constitutive models for a poly(e-caprolactone) scaffold.
    Quinn TP; Oreskovic TL; McCowan CN; Washburn NR
    Biomed Sci Instrum; 2004; 40():249-54. PubMed ID: 15133966
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiaxial mechanical behaviour of the passive ureteral wall: experimental study and mathematical characterisation.
    Sokolis DP
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1145-56. PubMed ID: 21660781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Converging shocks in elastic-plastic solids.
    Ortega AL; Lombardini M; Hill DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056307. PubMed ID: 22181498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment.
    Cansız FB; Dal H; Kaliske M
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1160-1172. PubMed ID: 24533658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.