These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales? Peters C; Elofsson A Proteins; 2014 Sep; 82(9):2190-8. PubMed ID: 24753217 [TBL] [Abstract][Full Text] [Related]
3. An amino acid "transmembrane tendency" scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Zhao G; London E Protein Sci; 2006 Aug; 15(8):1987-2001. PubMed ID: 16877712 [TBL] [Abstract][Full Text] [Related]
4. 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification. Simm S; Einloft J; Mirus O; Schleiff E Biol Res; 2016 Jul; 49(1):31. PubMed ID: 27378087 [TBL] [Abstract][Full Text] [Related]
5. Improved identification of outer membrane beta barrel proteins using primary sequence, predicted secondary structure, and evolutionary information. Mizianty MJ; Kurgan L Proteins; 2011 Jan; 79(1):294-303. PubMed ID: 21064129 [TBL] [Abstract][Full Text] [Related]
7. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Moon CP; Fleming KG Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10174-7. PubMed ID: 21606332 [TBL] [Abstract][Full Text] [Related]
8. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale. Lin M; Gessmann D; Naveed H; Liang J J Am Chem Soc; 2016 Mar; 138(8):2592-601. PubMed ID: 26860422 [TBL] [Abstract][Full Text] [Related]
9. Refining the treatment of membrane proteins by coarse-grained models. Vorobyov I; Kim I; Chu ZT; Warshel A Proteins; 2016 Jan; 84(1):92-117. PubMed ID: 26531155 [TBL] [Abstract][Full Text] [Related]
11. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. Chen K; Jiang Y; Du L; Kurgan L J Comput Chem; 2009 Jan; 30(1):163-72. PubMed ID: 18567007 [TBL] [Abstract][Full Text] [Related]
12. Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins. Moelbert S; Emberly E; Tang C Protein Sci; 2004 Mar; 13(3):752-62. PubMed ID: 14767075 [TBL] [Abstract][Full Text] [Related]
13. Lipophobicity and the residue environments of the transmembrane alpha-helical bundle. Mokrab Y; Stevens TJ; Mizuguchi K Proteins; 2009 Jan; 74(1):32-49. PubMed ID: 18561171 [TBL] [Abstract][Full Text] [Related]
14. A new amphipathy scale I. Determination of the scale from molecular dynamics data. Mazzé FM; Fuzo CA; Degrève L Biochim Biophys Acta; 2005 Feb; 1747(1):35-46. PubMed ID: 15680237 [TBL] [Abstract][Full Text] [Related]
15. Prediction of rotational orientation of transmembrane helical segments of integral membrane proteins using new environment-based propensities for amino acids derived from structural analyses. Dastmalchi S; Beheshti S; Morris MB; Church WB FEBS J; 2007 May; 274(10):2653-60. PubMed ID: 17451441 [TBL] [Abstract][Full Text] [Related]
16. A knowledge-based potential highlights unique features of membrane α-helical and β-barrel protein insertion and folding. Hsieh D; Davis A; Nanda V Protein Sci; 2012 Jan; 21(1):50-62. PubMed ID: 22031179 [TBL] [Abstract][Full Text] [Related]
17. Amino acid interaction preferences in helical membrane proteins. Jha AN; Vishveshwara S; Banavar JR Protein Eng Des Sel; 2011 Aug; 24(8):579-88. PubMed ID: 21666247 [TBL] [Abstract][Full Text] [Related]
18. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. Pilpel Y; Ben-Tal N; Lancet D J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897 [TBL] [Abstract][Full Text] [Related]