These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19090283)

  • 1. Sodium and proline accumulation as osmoregulators in tolerance of sugar beet genotypes to salinity.
    Pakniyat H; Armion M
    Pak J Biol Sci; 2007 Nov; 10(22):4081-6. PubMed ID: 19090283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro effect of different Na+/K+ ratios on plasma membrane H+ -ATPase activity in maize and sugar beet shoot.
    Wakeel A; Sümer A; Hanstein S; Yan F; Schubert S
    Plant Physiol Biochem; 2011 Mar; 49(3):341-5. PubMed ID: 21282062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply.
    Subbarao GV; Wheeler RM; Levine LH; Stutte GW
    J Plant Physiol; 2001 Jun; 158(6):767-76. PubMed ID: 12033231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raffinose accumulation and preferential allocation of carbon (
    Naguib WB; Divte PR; Chandra A; Sathee L; Singh B; Mandal PK; Anand A
    Physiol Plant; 2021 Dec; 173(4):1421-1433. PubMed ID: 33837561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of water quality on yield of sugar beet and sweet sorghum.
    Almodares A; Sharif ME
    J Environ Biol; 2005 Jul; 26(3):487-93. PubMed ID: 16334287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum.
    Slama I; Ghnaya T; Savouré A; Abdelly C
    C R Biol; 2008 Jun; 331(6):442-51. PubMed ID: 18510997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.
    Wang Y; Stevanato P; Lv C; Li R; Geng G
    J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor.
    Skorupa M; Gołębiewski M; Kurnik K; Niedojadło J; Kęsy J; Klamkowski K; Wójcik K; Treder W; Tretyn A; Tyburski J
    BMC Plant Biol; 2019 Feb; 19(1):57. PubMed ID: 30727960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
    Hossain MS; ElSayed AI; Moore M; Dietz KJ
    J Exp Bot; 2017 Feb; 68(5):1283-1298. PubMed ID: 28338762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.
    Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H
    Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits.
    Hongbo S; Zongsuo L; Mingan S
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):132-9. PubMed ID: 16413760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress.
    Singh D; Singh CK; Kumari S; Singh Tomar RS; Karwa S; Singh R; Singh RB; Sarkar SK; Pal M
    PLoS One; 2017; 12(5):e0177465. PubMed ID: 28542267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress.
    Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G
    J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance.
    Ibrahim W; Qiu CW; Zhang C; Cao F; Shuijin Z; Wu F
    Physiol Plant; 2019 Feb; 165(2):155-168. PubMed ID: 30006979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical, physiological, and growth evaluation of different chickpea genotypes under varying salinity regimes.
    Gul J; Ullah M
    Braz J Biol; 2022; 82():e268350. PubMed ID: 36350941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress.
    Tada Y; Komatsubara S; Kurusu T
    AoB Plants; 2014 Jul; 6():. PubMed ID: 25024277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis.
    Silva EN; Silveira JA; Rodrigues CR; Viégas RA
    Plant Biol (Stuttg); 2015 Sep; 17(5):1023-9. PubMed ID: 25865670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt sensitivity in chickpea is determined by sodium toxicity.
    Khan HA; Siddique KH; Colmer TD
    Planta; 2016 Sep; 244(3):623-37. PubMed ID: 27114264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet.
    Hossain MS; Persicke M; ElSayed AI; Kalinowski J; Dietz KJ
    J Exp Bot; 2017 Dec; 68(21-22):5961-5976. PubMed ID: 29140437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation.
    Álvarez-Aragón R; Haro R; Benito B; Rodríguez-Navarro A
    Planta; 2016 Jan; 243(1):97-114. PubMed ID: 26345991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.