These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19090782)

  • 1. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography.
    Jansen J; Melchels FP; Grijpma DW; Feijen J
    Biomacromolecules; 2009 Feb; 10(2):214-20. PubMed ID: 19090782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography.
    Melchels FP; Feijen J; Grijpma DW
    Biomaterials; 2009 Aug; 30(23-24):3801-9. PubMed ID: 19406467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.
    Elomaa L; Teixeira S; Hakala R; Korhonen H; Grijpma DW; Seppälä JV
    Acta Biomater; 2011 Nov; 7(11):3850-6. PubMed ID: 21763796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid photo-crosslinking of fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers for drug delivery applications.
    Jansen J; Boerakker MJ; Heuts J; Feijen J; Grijpma DW
    J Control Release; 2010 Oct; 147(1):54-61. PubMed ID: 20643171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds.
    Christenson EM; Soofi W; Holm JL; Cameron NR; Mikos AG
    Biomacromolecules; 2007 Dec; 8(12):3806-14. PubMed ID: 17979240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of oligolactone-based scaffolds for bone tissue engineering.
    Vogt S; Berger S; Wilke I; Larcher Y; Weisser J; Schnabelrauch M
    Biomed Mater Eng; 2005; 15(1-2):73-85. PubMed ID: 15623932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of photopolymerized poly(l-lactide-
    Zuo S; Lan X; Wang Y; Li S; Tang Z; Wang Y
    RSC Adv; 2022 Mar; 12(14):8708-8718. PubMed ID: 35424828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of biocompatible, UV-cured fumarated poly(ether-ester)-based tissue-engineering hydrogels.
    Akdemir ZS; Kayaman-Apohan N; Kahraman MV; Kuruca SE; Güngör A; Karadenizli S
    J Biomater Sci Polym Ed; 2011; 22(7):857-72. PubMed ID: 20566062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-crosslinked networks prepared from fumaric acid monoethyl ester-functionalized poly(D,L-lactic acid) oligomers and N-vinyl-2-pyrrolidone for the controlled and sustained release of proteins.
    Jansen J; Tibbe MP; Mihov G; Feijen J; Grijpma DW
    Acta Biomater; 2012 Oct; 8(10):3652-9. PubMed ID: 22705046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters.
    Lee KW; Wang S; Fox BC; Ritman EL; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 Apr; 8(4):1077-84. PubMed ID: 17326677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-crosslinked biodegradable hydrogels prepared from fumaric acid monoethyl ester-functionalized oligomers for protein delivery.
    Jansen J; Mihov G; Feijen J; Grijpma DW
    Macromol Biosci; 2012 May; 12(5):692-702. PubMed ID: 22416030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous biodegradable scaffold: predetermined porosity by dissolution of poly(ester-anhydride) fibers from polyester matrix.
    Rich J; Korhonen H; Hakala R; Korventausta J; Elomaa L; Seppälä J
    Macromol Biosci; 2009 Jul; 9(7):654-60. PubMed ID: 19165824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.
    Melchels FP; Bertoldi K; Gabbrielli R; Velders AH; Feijen J; Grijpma DW
    Biomaterials; 2010 Sep; 31(27):6909-16. PubMed ID: 20579724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Designed Poly(trimethylene carbonate) Meniscus Implants by Stereolithography: Challenges in Stereolithography.
    van Bochove B; Hannink G; Buma P; Grijpma DW
    Macromol Biosci; 2016 Dec; 16(12):1853-1863. PubMed ID: 27748548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography.
    Schüller-Ravoo S; Feijen J; Grijpma DW
    Macromol Biosci; 2011 Dec; 11(12):1662-71. PubMed ID: 22006829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering.
    Ranganathan SI; Yoon DM; Henslee AM; Nair MB; Smid C; Kasper FK; Tasciotti E; Mikos AG; Decuzzi P; Ferrari M
    Acta Biomater; 2010 Sep; 6(9):3448-56. PubMed ID: 20346422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography.
    Ronca A; Ambrosio L; Grijpma DW
    Acta Biomater; 2013 Apr; 9(4):5989-96. PubMed ID: 23232210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photopolymerized poly(l-lactide-
    Wang Y; Lan X; Zuo S; Zou Y; Li S; Tang Z; Wang Y
    RSC Adv; 2021 Jun; 11(34):20997-21005. PubMed ID: 35479389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of biodegradable networks by photo-crosslinking lactide, epsilon-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester.
    Grijpma DW; Hou Q; Feijen J
    Biomaterials; 2005 Jun; 26(16):2795-802. PubMed ID: 15603775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.