These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19091028)

  • 21. Identification of miRNA-mRNA regulatory modules by exploring collective group relationships.
    Masud Karim SM; Liu L; Le TD; Li J
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):7. PubMed ID: 26817421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review on methods for predicting miRNA-mRNA regulatory modules.
    Madhumita M; Paul S
    J Integr Bioinform; 2022 Sep; 19(3):. PubMed ID: 35357793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovering functional microRNA-mRNA regulatory modules in heterogeneous data.
    Liu B; Liu L; Tsykin A; Goodall GJ; Cairns MJ; Li J
    Adv Exp Med Biol; 2013; 774():267-90. PubMed ID: 23377978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic exploration of autonomous modules in noisy microRNA-target networks for testing the generality of the ceRNA hypothesis.
    Yip DK; Pang IK; Yip KY
    BMC Genomics; 2014 Dec; 15(1):1178. PubMed ID: 25539629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating multiple types of data to identify microRNA-gene co-modules.
    Zhang S
    Methods Mol Biol; 2013; 1049():215-29. PubMed ID: 23913219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets, and Functions.
    Singh S; Benton RG; Singh A; Singh A
    Methods Mol Biol; 2017; 1617():211-224. PubMed ID: 28540688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying dysfunctional miRNA-mRNA regulatory modules by inverse activation, cofunction, and high interconnection of target genes: a case study of glioblastoma.
    Xiao Y; Ping Y; Fan H; Xu C; Guan J; Zhao H; Li Y; Lv Y; Jin Y; Wang L; Li X
    Neuro Oncol; 2013 Jul; 15(7):818-28. PubMed ID: 23516263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy.
    Liu B; Li J; Tsykin A; Liu L; Gaur AB; Goodall GJ
    BMC Bioinformatics; 2009 Dec; 10():408. PubMed ID: 20003267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying Functional Modules in Co-Regulatory Networks Through Overlapping Spectral Clustering.
    Luo J; Yin Y; Pan C; Xiang G; Tu NH; Jiawei Luo ; Ying Yin ; Chu Pan ; Gen Xiang ; Nguyen Hoang Tu ; Pan C; Xiang G; Yin Y; Luo J; Tu NH
    IEEE Trans Nanobioscience; 2018 Apr; 17(2):134-144. PubMed ID: 29870337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs.
    Seo J; Jin D; Choi CH; Lee H
    PLoS One; 2017; 12(1):e0168412. PubMed ID: 28056026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
    Jayavelu ND; Bar N
    BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inter- and intra-combinatorial regulation by transcription factors and microRNAs.
    Zhou Y; Ferguson J; Chang JT; Kluger Y
    BMC Genomics; 2007 Oct; 8():396. PubMed ID: 17971223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CeModule: an integrative framework for discovering regulatory patterns from genomic data in cancer.
    Xiao Q; Luo J; Liang C; Cai J; Li G; Cao B
    BMC Bioinformatics; 2019 Feb; 20(1):67. PubMed ID: 30732558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational discovery of miR-TF regulatory modules in human genome.
    Tran DH; Satou K; Ho TB; Pham TH
    Bioinformation; 2010 Feb; 4(8):371-7. PubMed ID: 20975901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model.
    Joung JG; Fei Z
    Bioinformatics; 2009 Feb; 25(3):387-93. PubMed ID: 19056778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational approach to identifying gene-microRNA modules in cancer.
    Jin D; Lee H
    PLoS Comput Biol; 2015 Jan; 11(1):e1004042. PubMed ID: 25611546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines.
    Wang L; Oberg AL; Asmann YW; Sicotte H; McDonnell SK; Riska SM; Liu W; Steer CJ; Subramanian S; Cunningham JM; Cerhan JR; Thibodeau SN
    PLoS One; 2009 Jun; 4(6):e5878. PubMed ID: 19517021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer.
    Ye S; Yang L; Zhao X; Song W; Wang W; Zheng S
    Cell Biochem Biophys; 2014 Dec; 70(3):1849-58. PubMed ID: 25087086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Widespread roles of microRNAs during zebrafish development and beyond.
    Mishima Y
    Dev Growth Differ; 2012 Jan; 54(1):55-65. PubMed ID: 22150108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miRNA-mRNA correlation-network modules in human prostate cancer and the differences between primary and metastatic tumor subtypes.
    Zhang W; Edwards A; Fan W; Flemington EK; Zhang K
    PLoS One; 2012; 7(6):e40130. PubMed ID: 22768240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.