BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1909110)

  • 21. Chromate reduction by Serratia marcescens isolated from tannery effluent.
    Campos VL; Moraga R; Yánez J; Zaror CA; Mondaca MA
    Bull Environ Contam Toxicol; 2005 Aug; 75(2):400-6. PubMed ID: 16222516
    [No Abstract]   [Full Text] [Related]  

  • 22. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation.
    Sandana Mala JG; Sujatha D; Rose C
    Microbiol Res; 2015 Jan; 170():235-41. PubMed ID: 24985094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil.
    Sarangi A; Krishnan C
    Bioresour Technol; 2008 Jul; 99(10):4130-7. PubMed ID: 17920879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromate tolerant bacteria isolated from tannery effluent.
    Verma T; Srinath T; Gadpayle RU; Ramteke PW; Hans RK; Garg SK
    Bioresour Technol; 2001 May; 78(1):31-5. PubMed ID: 11265785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant.
    Morais PV; Branco R; Francisco R
    Biometals; 2011 Jun; 24(3):401-10. PubMed ID: 21472416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of chromate resistant bacteria from tannery effluent.
    Shukla OP; Rai UN; Singh NK; Dubey S; Baghel VS
    J Environ Biol; 2007 Apr; 28(2 Suppl):399-403. PubMed ID: 17929756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity.
    Viti C; Pace A; Giovannetti L
    Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil.
    Pal A; Paul AK
    Microbiol Res; 2004; 159(4):347-54. PubMed ID: 15646381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium oxidation state imaging in mammalian cells exposed in vitro to soluble or particulate chromate compounds.
    Ortega R; Fayard B; Salomé M; Devès G; Susini J
    Chem Res Toxicol; 2005 Oct; 18(10):1512-9. PubMed ID: 16533014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate.
    Zhitkovich A; Voitkun V; Costa M
    Carcinogenesis; 1995 Apr; 16(4):907-13. PubMed ID: 7728973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli.
    Aguilar-Barajas E; Paluscio E; Cervantes C; Rensing C
    FEMS Microbiol Lett; 2008 Aug; 285(1):97-100. PubMed ID: 18537831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of chromium with microorganisms and plants.
    Cervantes C; Campos-García J; Devars S; Gutiérrez-Corona F; Loza-Tavera H; Torres-Guzmán JC; Moreno-Sánchez R
    FEMS Microbiol Rev; 2001 May; 25(3):335-47. PubMed ID: 11348688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction.
    Ackerley DF; Gonzalez CF; Keyhan M; Blake R; Matin A
    Environ Microbiol; 2004 Aug; 6(8):851-60. PubMed ID: 15250887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lead chromate-induced chromosome damage requires extracellular dissolution to liberate chromium ions but does not require particle internalization or intracellular dissolution.
    Xie H; Holmes AL; Wise SS; Gordon N; Wise JP
    Chem Res Toxicol; 2004 Oct; 17(10):1362-7. PubMed ID: 15487897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromate reduction in Serratia marcescens isolated from tannery effluent and potential application for bioremediation of chromate pollution.
    Mondaca MA; Campos V; Moraga R; Zaror CA
    ScientificWorldJournal; 2002 Apr; 2():972-7. PubMed ID: 12805951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate.
    Wang PC; Toda K; Ohtake H; Kusaka I; Yabe I
    FEMS Microbiol Lett; 1991 Feb; 62(1):11-5. PubMed ID: 1851711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detoxification of chromium slag by chromate resistant bacteria.
    Quan X; Tan H; Zhao Y; Hu Y
    J Hazard Mater; 2006 Sep; 137(2):836-41. PubMed ID: 16784806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell-enhanced dissolution of carcinogenic lead chromate particles: the role of individual dissolution products in clastogenesis.
    Wise JP; Stearns DM; Wetterhahn KE; Patierno SR
    Carcinogenesis; 1994 Oct; 15(10):2249-54. PubMed ID: 7955062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of a by-product of Lentinus edodes to the bioremediation of chromate contaminated water.
    Chen GQ; Zeng GM; Tu X; Niu CG; Huang GH; Jiang W
    J Hazard Mater; 2006 Jul; 135(1-3):249-55. PubMed ID: 16386843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.