BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19091683)

  • 1. Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2009 Sep; 6(38):735-47. PubMed ID: 19091683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hind wing of the desert locust (Schistocerca gregaria Forskål). I. Functional morphology and mode of operation.
    Wootton RJ; Evans KE; Herbert R; Smith CW
    J Exp Biol; 2000 Oct; 203(Pt 19):2921-31. PubMed ID: 10976029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies.
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2009 Apr; 6(33):351-66. PubMed ID: 18682361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformable wing kinematics in free-flying hoverflies.
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2010 Jan; 7(42):131-42. PubMed ID: 19447818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
    Young J; Walker SM; Bomphrey RJ; Taylor GK; Thomas AL
    Science; 2009 Sep; 325(5947):1549-52. PubMed ID: 19762645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of wing pronation in evasive steering of locusts.
    Ribak G; Rand D; Weihs D; Ayali A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-varying span efficiency through the wingbeat of desert locusts.
    Henningsson P; Bomphrey RJ
    J R Soc Interface; 2012 Jun; 9(71):1177-86. PubMed ID: 22112649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure.
    Herbert RC; Young PG; Smith CW; Wootton RJ; Evans KE
    J Exp Biol; 2000 Oct; 203(Pt 19):2945-55. PubMed ID: 10976031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous measurement of aerodynamic forces and kinematics in flapping wings of tethered locust.
    Shkarayev S; Kumar R
    Bioinspir Biomim; 2015 Oct; 10(6):066003. PubMed ID: 26496206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerodynamic characteristics along the wing span of a dragonfly
    Hefler C; Qiu H; Shyy W
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
    Li C; Dong H
    Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?
    Meresman Y; Ribak G
    R Soc Open Sci; 2017 Oct; 4(10):171152. PubMed ID: 29134103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.