These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19091929)

  • 1. Role of inhibitory neurotransmission in the control of canine hypoglossal motoneuron activity in vivo.
    Sanchez A; Mustapic S; Zuperku EJ; Stucke AG; Hopp FA; Stuth EA
    J Neurophysiol; 2009 Mar; 101(3):1211-21. PubMed ID: 19091929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major components of endogenous neurotransmission underlying the discharge activity of hypoglossal motoneurons in vivo.
    Zuperku EJ; Brandes IF; Stucke AG; Sanchez A; Hopp FA; Stuth EA
    Adv Exp Med Biol; 2008; 605():279-84. PubMed ID: 18085286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of inhibitory amino acids in control of hypoglossal motor outflow to genioglossus muscle in naturally sleeping rats.
    Morrison JL; Sood S; Liu H; Park E; Liu X; Nolan P; Horner RL
    J Physiol; 2003 Nov; 552(Pt 3):975-91. PubMed ID: 12937280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of strychnine, bicuculline, and picrotoxin on inhibition of hypoglossal motoneurons.
    Felpel LP
    J Neurosci Res; 1977; 3(4):289-94. PubMed ID: 615277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonergic modulation of inspiratory hypoglossal motoneurons in decerebrate dogs.
    Brandes IF; Zuperku EJ; Stucke AG; Jakovcevic D; Hopp FA; Stuth EA
    J Neurophysiol; 2006 Jun; 95(6):3449-59. PubMed ID: 16495364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse.
    Paton JF; Richter DW
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons.
    Núñez-Abades PA; Pattillo JM; Hodgson TM; Cameron WE
    J Neurophysiol; 2000 Nov; 84(5):2317-29. PubMed ID: 11067975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined antagonism of aminergic excitatory and amino acid inhibitory receptors in the XII nucleus abolishes REM sleep-like depression of hypoglossal motoneuronal activity.
    Fenik V; Davies RO; Kubin L
    Arch Ital Biol; 2004 May; 142(3):237-49. PubMed ID: 15260378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns.
    Dogas Z; Krolo M; Stuth EA; Tonkovic-Capin M; Hopp FA; McCrimmon DR; Zuperku EJ
    J Neurophysiol; 1998 Nov; 80(5):2368-77. PubMed ID: 9819249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurogenesis of gasping does not require inhibitory transmission using GABA(A) or glycine receptors.
    St-John WM; Paton JF
    Respir Physiol Neurobiol; 2002 Sep; 132(3):265-77. PubMed ID: 12208085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoflurane depresses the response of inspiratory hypoglossal motoneurons to serotonin in vivo.
    Brandes IF; Zuperku EJ; Stucke AG; Hopp FA; Jakovcevic D; Stuth EA
    Anesthesiology; 2007 Apr; 106(4):736-45. PubMed ID: 17413911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat.
    Miyazaki M; Tanaka I; Ezure K
    Exp Brain Res; 1999 Nov; 129(2):191-200. PubMed ID: 10591893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent inhibition and excitation of phrenic motoneurons during inspiration: phase-specific control of excitability.
    Parkis MA; Dong X; Feldman JL; Funk GD
    J Neurosci; 1999 Mar; 19(6):2368-80. PubMed ID: 10066287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of spinal or hypoglossal motoneurons of the newborn rat by glycine or GABA.
    Marchetti C; Pagnotta S; Donato R; Nistri A
    Eur J Neurosci; 2002 Mar; 15(6):975-83. PubMed ID: 11918657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic inhibition in the isolated respiratory network of neonatal rats.
    Brockhaus J; Ballanyi K
    Eur J Neurosci; 1998 Dec; 10(12):3823-39. PubMed ID: 9875360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two kinds of recurrent inhibition of cat spinal alpha-motoneurones as differentiated pharmacologically.
    Cullheim S; Kellerth JO
    J Physiol; 1981 Mar; 312():209-24. PubMed ID: 7264991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of hypoglossal motoneurons during the carbachol-induced atonia of REM sleep is not caused by fast synaptic inhibition.
    Kubin L; Kimura H; Tojima H; Davies RO; Pack AI
    Brain Res; 1993 May; 611(2):300-12. PubMed ID: 8334524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.