These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 19092202)
1. Natural cadmium loading and balance in a non-polluted rice paddy field in Japan. Yada S; Arao T; Kawasaki A; Saito T; Nagai H; Mano M; Hamada Y Water Sci Technol; 2008; 58(11):2243-9. PubMed ID: 19092202 [TBL] [Abstract][Full Text] [Related]
2. The input-output balance of cadmium in a paddy field of Tokyo. Kikuchi T; Okazaki M; Toyota K; Motobayashi T; Kato M Chemosphere; 2007 Mar; 67(5):920-7. PubMed ID: 17207840 [TBL] [Abstract][Full Text] [Related]
3. Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains II: Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials. Kikuchi T; Okazaki M; Kimura SD; Motobayashi T; Baasansuren J; Hattori T; Abe T J Hazard Mater; 2008 Jun; 154(1-3):294-9. PubMed ID: 18054161 [TBL] [Abstract][Full Text] [Related]
4. Impacts of agrochemical fertilizer on the aquatic environment of paddy fields in Vietnam. Ha SR; Dung PA; Lee BH Water Sci Technol; 2001; 43(5):193-202. PubMed ID: 11379132 [TBL] [Abstract][Full Text] [Related]
5. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing. Makino T; Kamiya T; Takano H; Itou T; Sekiya N; Sasaki K; Maejima Y; Sugahara K Environ Pollut; 2007 May; 147(1):112-9. PubMed ID: 17141928 [TBL] [Abstract][Full Text] [Related]
6. Nutrient balance in a paddy field with a recycling irrigation system. Feng YW; Yoshinaga I; Shiratani E; Hitomi T; Hasebe H Water Sci Technol; 2005; 51(3-4):151-7. PubMed ID: 15850185 [TBL] [Abstract][Full Text] [Related]
7. Suppressive effect of magnesium oxide materials on cadmium accumulation in winter wheat grain cultivated in a cadmium-contaminated paddy field under annual rice-wheat rotational cultivation. Kikuchi T; Okazaki M; Motobayashi T J Hazard Mater; 2009 Aug; 168(1):89-93. PubMed ID: 19304384 [TBL] [Abstract][Full Text] [Related]
8. Biological monitoring of the general population for cadmium. Ikeda M IARC Sci Publ; 1992; (118):65-72. PubMed ID: 1303974 [TBL] [Abstract][Full Text] [Related]
9. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Yu H; Wang J; Fang W; Yuan J; Yang Z Sci Total Environ; 2006 Nov; 370(2-3):302-9. PubMed ID: 16870236 [TBL] [Abstract][Full Text] [Related]
10. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields. Römkens PF; Brus DJ; Guo HY; Chu CL; Chiang CM; Koopmans GF Sci Total Environ; 2011 Aug; 409(17):3098-105. PubMed ID: 21632090 [TBL] [Abstract][Full Text] [Related]
11. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan. Koga N; Tajima R J Environ Manage; 2011 Mar; 92(3):967-73. PubMed ID: 21126818 [TBL] [Abstract][Full Text] [Related]
12. Model development for nutrient loading estimates from paddy rice fields in Korea. Jeon JH; Yoon CG; Ham JH; Jung KW J Environ Sci Health B; 2004; 39(5-6):845-60. PubMed ID: 15620091 [TBL] [Abstract][Full Text] [Related]
13. [Cd Balance Analysis of a Typical Rice Paddy System in Central Hunan]. Jiang K; Deng X; Zhou H; Long J; Li XY; Dong X; Wang SB; Liu WH; Hou HB; Peng PQ; Liao BH Huan Jing Ke Xue; 2019 Jul; 40(7):3324-3330. PubMed ID: 31854734 [TBL] [Abstract][Full Text] [Related]
14. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring. Vu SH; Ishihara S; Watanabe H Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930 [TBL] [Abstract][Full Text] [Related]
15. Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals. Makino T; Sugahara K; Sakurai Y; Takano H; Kamiya T; Sasaki K; Itou T; Sekiya N Environ Pollut; 2006 Nov; 144(1):2-10. PubMed ID: 16580105 [TBL] [Abstract][Full Text] [Related]
16. Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period. Dittmar J; Voegelin A; Roberts LC; Hug SJ; Saha GC; Ali MA; Badruzzaman AB; Kretzschmar R Environ Sci Technol; 2010 Apr; 44(8):2925-31. PubMed ID: 20235529 [TBL] [Abstract][Full Text] [Related]
17. Dose-response relationship between total cadmium intake calculated from the cadmium concentration in rice collected from each household of farmers and renal dysfunction in inhabitants of the Jinzu River basin, Japan. Kobayashi E; Okubo Y; Suwazono Y; Kido T; Nogawa K J Appl Toxicol; 2002; 22(6):431-6. PubMed ID: 12424747 [TBL] [Abstract][Full Text] [Related]
18. [Distribution of cadmium in the rice seed in cadmium polluted districts]. Mtsue R; Fukuda H; Honda S; Hayashi M; Kubota K Igaku To Seibutsugaku; 1971 Nov; 83(5):239-43. PubMed ID: 5170189 [No Abstract] [Full Text] [Related]
19. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Murakami M; Ae N; Ishikawa S Environ Pollut; 2007 Jan; 145(1):96-103. PubMed ID: 16781805 [TBL] [Abstract][Full Text] [Related]
20. Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin. Zhang Z; Zhang J; He R; Wang Z; Zhu Y Environ Pollut; 2007 Jan; 145(2):425-33. PubMed ID: 16979805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]