BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 19092203)

  • 1. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany.
    Hirt U; Venohr M; Kreins P; Behrendt H
    Water Sci Technol; 2008; 58(11):2251-8. PubMed ID: 19092203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient emissions from diffuse and point sources into the River Danube and its main tributaries for the period of 1998-2000--results and problems.
    Schreiber H; Behrendt H; Constantinescu LT; Cvitanic I; Drumea D; Jabucar D; Juran S; Pataki B; Snishko S; Zessner M
    Water Sci Technol; 2005; 51(3-4):283-90. PubMed ID: 15850201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical modelling of riverine nutrient sources and retention in the Lake Peipsi drainage basin.
    Vassiljev A; Stålnacke P
    Water Sci Technol; 2005; 51(3-4):309-17. PubMed ID: 15850204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lessons learned from investigations on case study level for modelling of nutrient emissions in the Danube basin.
    Schilling C; Behrendt H; Blaschke A; Danielescu S; Dimova G; Gabriel O; Heinecke U; Kovacs A; Lampert C; Postolache C; Schreiber H; Strauss P; Zessner M
    Water Sci Technol; 2005; 51(11):183-91. PubMed ID: 16114632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).
    Mourad D; van der Perk M
    Water Sci Technol; 2004; 49(3):21-8. PubMed ID: 15053095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.
    Schaffner M; Bader HP; Scheidegger R
    Sci Total Environ; 2009 Aug; 407(17):4902-15. PubMed ID: 19501876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the effect of nutrient mitigation measures in the watersheds of the Southern Bight of the North Sea.
    Thieu V; Garnier J; Billen G
    Sci Total Environ; 2010 Feb; 408(6):1245-55. PubMed ID: 20071008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia.
    Hofmann J; Venohr M; Behrendt H; Opitz D
    Water Sci Technol; 2010; 62(2):353-63. PubMed ID: 20651440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil.
    de Lima Barros AM; do Carmo Sobral M; Gunkel G
    Water Sci Technol; 2013; 68(2):357-65. PubMed ID: 23863428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management.
    Bowes MJ; Hilton J; Irons GP; Hornby DD
    Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland.
    Lepistö A; Granlund K; Kortelainen P; Räike A
    Sci Total Environ; 2006 Jul; 365(1-3):238-59. PubMed ID: 16624380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER.
    Hüffmeyer N; Klasmeier J; Matthies M
    Sci Total Environ; 2009 Mar; 407(7):2296-305. PubMed ID: 19150732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of the nutrient loads of the Danube since the late eighties: An analysis based on long term changes along the whole Danube River and its main tributaries.
    van Gils J; Behrendt H; Constantinescu A; Laszlo F; Popescu L
    Water Sci Technol; 2005; 51(11):205-12. PubMed ID: 16114634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling water and nutrients fluxes in the Büyük Menderes drainage basin, Turkey.
    Durdu OF; Cvetkovic V
    Water Sci Technol; 2009; 59(3):531-41. PubMed ID: 19214008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management of regional German river catchments (REGFLUD) impact of nitrogen reduction measures on the nitrogen load in the River Ems and the River Rhine.
    Kunkel R; Bogena H; Goemann H; Kreins P; Wendland F
    Water Sci Technol; 2005; 51(3-4):291-9. PubMed ID: 15850202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water quality, nutrients and the European union's Water Framework Directive in a lowland agricultural region: Suffolk, south-east England.
    Howden NJ; Bowes MJ; Clark AD; Humphries N; Neal C
    Sci Total Environ; 2009 Apr; 407(8):2966-79. PubMed ID: 19217145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long term change of nutrient concentrations of rivers discharging in European seas.
    Bouraoui F; Grizzetti B
    Sci Total Environ; 2011 Nov; 409(23):4899-916. PubMed ID: 21911245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen retention in a river system and the effects of river morphology and lakes.
    Venohr M; Donohue I; Fogelberg S; Arheimer B; Irvine K; Behrendt H
    Water Sci Technol; 2005; 51(3-4):19-29. PubMed ID: 15850170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.