These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19093211)

  • 1. Real time, non-invasive assessment of leaflet deformation in heart valve tissue engineering.
    Kortsmit J; Driessen NJ; Rutten MC; Baaijens FP
    Ann Biomed Eng; 2009 Mar; 37(3):532-41. PubMed ID: 19093211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation-controlled load application in heart valve tissue engineering.
    Kortsmit J; Rutten MC; Wijlaars MW; Baaijens FP
    Tissue Eng Part C Methods; 2009 Dec; 15(4):707-16. PubMed ID: 19275473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach.
    Mol A; Driessen NJ; Rutten MC; Hoerstrup SP; Bouten CV; Baaijens FP
    Ann Biomed Eng; 2005 Dec; 33(12):1778-88. PubMed ID: 16389526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in developing a living human tissue-engineered tri-leaflet heart valve assembled from tissue produced by the self-assembly approach.
    Dubé J; Bourget JM; Gauvin R; Lafrance H; Roberge CJ; Auger FA; Germain L
    Acta Biomater; 2014 Aug; 10(8):3563-70. PubMed ID: 24813743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology.
    Engelmayr GC; Soletti L; Vigmostad SC; Budilarto SG; Federspiel WJ; Chandran KB; Vorp DA; Sacks MS
    Ann Biomed Eng; 2008 May; 36(5):700-12. PubMed ID: 18253834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
    Hayashida K; Kanda K; Yaku H; Ando J; Nakayama Y
    J Thorac Cardiovasc Surg; 2007 Jul; 134(1):152-9. PubMed ID: 17599501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues.
    Engelmayr GC; Sales VL; Mayer JE; Sacks MS
    Biomaterials; 2006 Dec; 27(36):6083-95. PubMed ID: 16930686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autologous human tissue-engineered heart valves: prospects for systemic application.
    Mol A; Rutten MC; Driessen NJ; Bouten CV; Zünd G; Baaijens FP; Hoerstrup SP
    Circulation; 2006 Jul; 114(1 Suppl):I152-8. PubMed ID: 16820565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve.
    Jiang H; Campbell G; Xi F
    Med Eng Phys; 2005 Mar; 27(2):175-80. PubMed ID: 15642513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering.
    Kortsmit J; Driessen NJ; Rutten MC; Baaijens FP
    Tissue Eng Part A; 2009 Apr; 15(4):797-806. PubMed ID: 19105603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue.
    Engelmayr GC; Rabkin E; Sutherland FW; Schoen FJ; Mayer JE; Sacks MS
    Biomaterials; 2005 Jan; 26(2):175-87. PubMed ID: 15207464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubular heart valves: a new tissue prosthesis design--preclinical evaluation of the 3F aortic bioprosthesis.
    Cox JL; Ad N; Myers K; Gharib M; Quijano RC
    J Thorac Cardiovasc Surg; 2005 Aug; 130(2):520-7. PubMed ID: 16077422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer modelling of bioprosthetic heart valves.
    Christie GW
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S95-100; discussion S101. PubMed ID: 1389288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical monitoring during bioreactor conditioning of tissue-engineered heart valves.
    Ziegelmueller JA; Zaenkert EK; Schams R; Lackermair S; Schmitz C; Reichart B; Sodian R
    ASAIO J; 2010; 56(3):228-31. PubMed ID: 20335802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated bioprosthetic heart valve deformation under quasi-static loading.
    Sun W; Abad A; Sacks MS
    J Biomech Eng; 2005 Nov; 127(6):905-14. PubMed ID: 16438226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells.
    Sodian R; Lueders C; Kraemer L; Kuebler W; Shakibaei M; Reichart B; Daebritz S; Hetzer R
    Ann Thorac Surg; 2006 Jun; 81(6):2207-16. PubMed ID: 16731156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-dependent re-endothelialization of tissue-engineered heart valves.
    Lichtenberg A; Cebotari S; Tudorache I; Sturz G; Winterhalter M; Hilfiker A; Haverich A
    J Heart Valve Dis; 2006 Mar; 15(2):287-93; discussion 293-4. PubMed ID: 16607913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.