These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19093211)

  • 21. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
    Cheng R; Lai YG; Chandran KB
    J Heart Valve Dis; 2003 Nov; 12(6):772-80. PubMed ID: 14658820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root.
    Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Ingham E; Fisher J
    J Heart Valve Dis; 2005 May; 14(3):408-21; discussion 422. PubMed ID: 15974537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An experimentally derived stress resultant shell model for heart valve dynamic simulations.
    Kim H; Chandran KB; Sacks MS; Lu J
    Ann Biomed Eng; 2007 Jan; 35(1):30-44. PubMed ID: 17089074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis.
    Jiang H; Campbell G; Boughner D; Wan WK; Quantz M
    Med Eng Phys; 2004 May; 26(4):269-77. PubMed ID: 15121052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds.
    Engelmayr GC; Sacks MS
    Biomech Model Mechanobiol; 2008 Aug; 7(4):309-21. PubMed ID: 17713801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Living autologous heart valves engineered from human prenatally harvested progenitors.
    Schmidt D; Mol A; Breymann C; Achermann J; Odermatt B; Gössi M; Neuenschwander S; Prêtre R; Genoni M; Zund G; Hoerstrup SP
    Circulation; 2006 Jul; 114(1 Suppl):I125-31. PubMed ID: 16820561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations.
    Gandaglia A; Bagno A; Naso F; Spina M; Gerosa G
    Eur J Cardiothorac Surg; 2011 Apr; 39(4):523-31. PubMed ID: 21163670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves.
    Loerakker S; Argento G; Oomens CW; Baaijens FP
    J Biomech; 2013 Jul; 46(11):1792-800. PubMed ID: 23786664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model.
    Kim H; Lu J; Sacks MS; Chandran KB
    Ann Biomed Eng; 2008 Feb; 36(2):262-75. PubMed ID: 18046648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional analysis of bioprosthetic heart valves.
    Arcidiacono G; Corvi A; Severi T
    J Biomech; 2005 Jul; 38(7):1483-90. PubMed ID: 15922759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cardiovascular tissue-reactor: a novel device for the engineering of heart valves.
    Karim N; Golz K; Bader A
    Artif Organs; 2006 Oct; 30(10):809-14. PubMed ID: 17026581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment.
    Sun W; Li K; Sirois E
    J Biomech; 2010 Dec; 43(16):3085-90. PubMed ID: 20817163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition.
    Loger K; Engel A; Haupt J; Lima de Miranda R; Lutter G; Quandt E
    Cardiovasc Eng Technol; 2016 Mar; 7(1):69-77. PubMed ID: 26743538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new construction technique for tissue-engineered heart valves using the self-assembly method.
    Tremblay C; Ruel J; Bourget JM; Laterreur V; Vallières K; Tondreau MY; Lacroix D; Germain L; Auger FA
    Tissue Eng Part C Methods; 2014 Nov; 20(11):905-15. PubMed ID: 24576074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-physiologic Bioreactor Processing Conditions for Heart Valve Tissue Engineering.
    VeDepo MC; Buse EE; Paul A; Converse GL; Hopkins RA
    Cardiovasc Eng Technol; 2019 Dec; 10(4):628-637. PubMed ID: 31650518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dependence of tissue valve leaflet motion on the viscosity of blood analogue fluid.
    Chandran KB; Fatemi R; Schoephoerster R
    Life Support Syst; 1986; 4(4):289-303. PubMed ID: 3561030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.
    Schmidt D; Dijkman PE; Driessen-Mol A; Stenger R; Mariani C; Puolakka A; Rissanen M; Deichmann T; Odermatt B; Weber B; Emmert MY; Zund G; Baaijens FP; Hoerstrup SP
    J Am Coll Cardiol; 2010 Aug; 56(6):510-20. PubMed ID: 20670763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioreactors for development of tissue engineered heart valves.
    Berry JL; Steen JA; Koudy Williams J; Jordan JE; Atala A; Yoo JJ
    Ann Biomed Eng; 2010 Nov; 38(11):3272-9. PubMed ID: 20820920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.