BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19093505)

  • 1. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing.
    Tang YL; Huang JF; Cai SH; Wang RC
    Pak J Biol Sci; 2007 Dec; 10(24):4420-5. PubMed ID: 19093505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].
    Tan CW; Zhou QB; Qi L; Zhuang HY
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ hyperspectral data analysis for pigment content estimation of rice leaves.
    Cheng Q; Huang JF; Wang XZ; Wang RC
    J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of leaf nitrogen content from spectral characteristics of rice canopy.
    Yang CM
    ScientificWorldJournal; 2001 Dec; 1 Suppl 2():81-9. PubMed ID: 12805736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W
    Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice].
    Tian YC; Yang J; Yao X; Zhu Y; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1685-90. PubMed ID: 19899471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data.
    Zhou K; Deng X; Yao X; Tian Y; Cao W; Zhu Y; Ustin SL; Cheng T
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie].
    Liu ZY; Shi JJ; Wang DC; Huang JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):710-4. PubMed ID: 20496693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice].
    Zhou DQ; Tian YC; Yao X; Zhu Y; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):337-44. PubMed ID: 18464640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Normalized difference ratio pigment index for estimating chlorophyll and cartenoid contents of in leaves of rice].
    Wang FM; Huang JF; Wang XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):1064-8. PubMed ID: 19626904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton.
    Read JJ; Tarpley L; McKinion JM; Reddy KR
    J Environ Qual; 2002; 31(5):1442-52. PubMed ID: 12371160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating biophysical parameters of rice with remote sensing data using support vector machines.
    Yang X; Huang J; Wu Y; Wang J; Wang P; Wang X; Huete AR
    Sci China Life Sci; 2011 Mar; 54(3):272-81. PubMed ID: 21416328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preliminary study on radiant spectra of the leaves of paddy and upland rice].
    Peng Y; Wang H; He D
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Jun; 18(3):269-72. PubMed ID: 15810266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field].
    Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Estimation models of rice LAI and chlorophyll content based on MOD09].
    Cheng Q
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1453-8. PubMed ID: 17066702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer.
    Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z
    Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spectral response of maize leaves and prediction of their nitrogen content].
    Chen ZQ; Wang L; Bai YL; Yang LP; Lu YL; Wang H; Wang ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1066-70. PubMed ID: 23841430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Detection of corn chlorophyll content using canopy spectral reflectance].
    Sun H; Li MZ; Zhang YE; Zhao Y; Wang HH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2488-92. PubMed ID: 21105424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra.
    Yang J; Du L; Sun J; Zhang Z; Chen B; Shi S; Gong W; Song S
    Opt Express; 2016 Aug; 24(17):19354-65. PubMed ID: 27557214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on hyperspectral estimation of pigment contents in leaves of cotton under disease stress].
    Chen B; Li SK; Wang KR; Wang FY; Xiao CH; Pan WC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):421-5. PubMed ID: 20384137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.