These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19093505)

  • 1. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing.
    Tang YL; Huang JF; Cai SH; Wang RC
    Pak J Biol Sci; 2007 Dec; 10(24):4420-5. PubMed ID: 19093505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].
    Tan CW; Zhou QB; Qi L; Zhuang HY
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ hyperspectral data analysis for pigment content estimation of rice leaves.
    Cheng Q; Huang JF; Wang XZ; Wang RC
    J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of leaf nitrogen content from spectral characteristics of rice canopy.
    Yang CM
    ScientificWorldJournal; 2001 Dec; 1 Suppl 2():81-9. PubMed ID: 12805736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents.
    Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W
    Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice].
    Tian YC; Yang J; Yao X; Zhu Y; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1685-90. PubMed ID: 19899471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data.
    Zhou K; Deng X; Yao X; Tian Y; Cao W; Zhu Y; Ustin SL; Cheng T
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie].
    Liu ZY; Shi JJ; Wang DC; Huang JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):710-4. PubMed ID: 20496693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice].
    Zhou DQ; Tian YC; Yao X; Zhu Y; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):337-44. PubMed ID: 18464640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Normalized difference ratio pigment index for estimating chlorophyll and cartenoid contents of in leaves of rice].
    Wang FM; Huang JF; Wang XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):1064-8. PubMed ID: 19626904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton.
    Read JJ; Tarpley L; McKinion JM; Reddy KR
    J Environ Qual; 2002; 31(5):1442-52. PubMed ID: 12371160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating biophysical parameters of rice with remote sensing data using support vector machines.
    Yang X; Huang J; Wu Y; Wang J; Wang P; Wang X; Huete AR
    Sci China Life Sci; 2011 Mar; 54(3):272-81. PubMed ID: 21416328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preliminary study on radiant spectra of the leaves of paddy and upland rice].
    Peng Y; Wang H; He D
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Jun; 18(3):269-72. PubMed ID: 15810266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field].
    Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Estimation models of rice LAI and chlorophyll content based on MOD09].
    Cheng Q
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1453-8. PubMed ID: 17066702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer.
    Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z
    Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spectral response of maize leaves and prediction of their nitrogen content].
    Chen ZQ; Wang L; Bai YL; Yang LP; Lu YL; Wang H; Wang ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1066-70. PubMed ID: 23841430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Detection of corn chlorophyll content using canopy spectral reflectance].
    Sun H; Li MZ; Zhang YE; Zhao Y; Wang HH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2488-92. PubMed ID: 21105424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra.
    Yang J; Du L; Sun J; Zhang Z; Chen B; Shi S; Gong W; Song S
    Opt Express; 2016 Aug; 24(17):19354-65. PubMed ID: 27557214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on hyperspectral estimation of pigment contents in leaves of cotton under disease stress].
    Chen B; Li SK; Wang KR; Wang FY; Xiao CH; Pan WC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):421-5. PubMed ID: 20384137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.