These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19093541)

  • 41. Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light.
    Pierscionek BK; Belaidi A; Bruun HH
    Eye (Lond); 2005 Apr; 19(4):375-81. PubMed ID: 15319785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Research on ultrafine particle size measurement using small amounts of data.
    Li Z; Shen J; Liu W; Wang Y
    Appl Opt; 2011 Aug; 50(24):4855-9. PubMed ID: 21857710
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Counter-propagating optical trapping system for size and refractive index measurement of microparticles.
    Flynn RA; Shao B; Chachisvilis M; Ozkan M; Esener SC
    Biosens Bioelectron; 2006 Jan; 21(7):1029-36. PubMed ID: 16368481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling and interpretation of extinction spectra of oriented nonspherical composite particles: application to biological cells.
    Serebrennikova YM; Garcia-Rubio LH
    Appl Opt; 2010 Aug; 49(23):4460-71. PubMed ID: 20697450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Tyndall's hypochromism in suspensions].
    Vekshin NL; Frolova MS; Kovalev VI; Begunova EA
    Biofizika; 2015; 60(1):129-35. PubMed ID: 25868350
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid.
    Niskanen I; Räty J; Peiponen KE
    Talanta; 2013 Oct; 115():68-73. PubMed ID: 24054563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Meteorological influence on aerosol extinction in the 0.2-40-microm wavelength range.
    Nilsson B
    Appl Opt; 1979 Oct; 18(20):3457-73. PubMed ID: 20216626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inversion of the anomalous diffraction approximation for variable complex index of refraction near unity.
    Smith CB
    Appl Opt; 1982 Sep; 21(18):3363-6. PubMed ID: 20396237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous retrieval of the complex refractive indices of the core and shell of coated aerosol particles from extinction measurements using simulated annealing.
    Erlick C; Haspel M; Rudich Y
    Appl Opt; 2011 Aug; 50(22):4393-402. PubMed ID: 21833116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-precision sizing of nanoparticles by laser transmission spectroscopy.
    Li F; Schafer R; Hwang CT; Tanner CE; Ruggiero ST
    Appl Opt; 2010 Dec; 49(34):6602-11. PubMed ID: 21124537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Backscattering spectrum analysis of nonspheroid soot particle].
    Xing J; Sun XG; Yuan GB; Qi X; Tang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2239-42. PubMed ID: 20939348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extinction spectra of suspensions of microspheres: determination of the spectral refractive index and particle size distribution with nanometer accuracy.
    Gienger J; Bär M; Neukammer J
    Appl Opt; 2018 Jan; 57(2):344-355. PubMed ID: 29328184
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Particle sizing by laser diffraction spectrometry in the anomalous regime.
    Kusters KA; Wijers JG; Thoenes D
    Appl Opt; 1991 Nov; 30(33):4839-47. PubMed ID: 20717287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Absorption and elastic scattering of light by particle aggregates.
    Quinten M; Kreibig U
    Appl Opt; 1993 Oct; 32(30):6173-82. PubMed ID: 20856447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Complex refractive index measurement of fly ash particles using suspension spectral transmission method].
    Xing J; Sun XG; Zhou C; Yuan GB; Zhang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Dec; 30(12):3371-4. PubMed ID: 21322243
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The backscattering and extinction of visible and infrared radiation by selected major cloud models.
    Carrier LW; Cato GA; von Essen KJ
    Appl Opt; 1967 Jul; 6(7):1209-16. PubMed ID: 20062165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-wavelength transmission spectroscopy revisited for micron and submicron particle characterization.
    Smith JM; Roth A; Huffman DE; Serebrennikova YM; Lindon J; García-Rubio LH
    Appl Spectrosc; 2012 Oct; 66(10):1186-96. PubMed ID: 23031702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of apparent extinction for optical transmission through rain.
    Vasseur H; Gibbins CJ
    Appl Opt; 1996 Dec; 35(36):7144-50. PubMed ID: 21151320
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Retrieval of aerosol refractive index from extinction spectra with a damped harmonic-oscillator band model.
    Thomas GE; Bass SF; Grainger RG; Lambert A
    Appl Opt; 2005 Mar; 44(7):1332-41. PubMed ID: 15765714
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Particle sizing by inversion of the optical transform pattern.
    Coston SD; George N
    Appl Opt; 1991 Nov; 30(33):4785-94. PubMed ID: 20717281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.