These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19093597)

  • 61. Shoulder muscle activity in Parkinson's disease during multijoint arm movements across a range of speeds.
    Farley BG; Sherman S; Koshland GF
    Exp Brain Res; 2004 Jan; 154(2):160-75. PubMed ID: 14564435
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Changes in kinematic and EMG variability while practicing a maximal performance task.
    Gabriel DA
    J Electromyogr Kinesiol; 2002 Oct; 12(5):407-12. PubMed ID: 12223174
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Changes in the relationship between movement velocity and movement distance in primary focal hand dystonia.
    Prodoehl J; Corcos DM; Leurgans S; Comella CL; Weis-McNulty A; MacKinnon CD
    J Mot Behav; 2008 Jul; 40(4):301-13. PubMed ID: 18628107
    [TBL] [Abstract][Full Text] [Related]  

  • 64. fMRI analysis for motor paradigms using EMG-based designs: a validation study.
    van Rootselaar AF; Renken R; de Jong BM; Hoogduin JM; Tijssen MA; Maurits NM
    Hum Brain Mapp; 2007 Nov; 28(11):1117-27. PubMed ID: 17274019
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tilting against a major theory of movement control.
    Pennisi E
    Science; 1996 Apr; 272(5258):32-3. PubMed ID: 8600532
    [No Abstract]   [Full Text] [Related]  

  • 66. The effect of motor learning in facioscapulohumeral muscular dystrophy patients.
    Bakhtiary AH; Phoenix J; Edwards RH; Frostick SP
    Eur J Appl Physiol; 2000 Dec; 83(6):551-8. PubMed ID: 11192064
    [TBL] [Abstract][Full Text] [Related]  

  • 67. On-line control of a speeded motor response.
    McGarry T; Franks IM
    Percept Mot Skills; 1996 Apr; 82(2):636-8. PubMed ID: 8724939
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neural compensation for mechanical loading of the hand during coupled oscillations of the hand and foot.
    Baldissera F; Cavallari P
    Exp Brain Res; 2001 Jul; 139(1):18-29. PubMed ID: 11482840
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sex differences in electromechanical delay during a punch movement.
    Ferreira MA; Vencesbrito AM
    Percept Mot Skills; 2012 Aug; 115(1):228-40. PubMed ID: 23033759
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Time course and temporal order of changes in movement kinematics during learning of fast and accurate elbow flexions.
    Flament D; Shapiro MB; Kempf T; Corcos DM
    Exp Brain Res; 1999 Dec; 129(3):441-50. PubMed ID: 10591915
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Similar movements are associated with drastically different muscle contraction velocities.
    Hagen DA; Valero-Cuevas FJ
    J Biomech; 2017 Jul; 59():90-100. PubMed ID: 28619447
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional anatomical studies of the elbow movements. I. Electromyographic (EMG) analysis.
    Naito A; Shimizu Y; Handa Y; Ichie M; Hoshimiya N
    Okajimas Folia Anat Jpn; 1991 Dec; 68(5):283-8. PubMed ID: 1806846
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Natural goal-directed movements and the triphasic EMG.
    Morrison S; Anson JG
    Motor Control; 1999 Oct; 3(4):346-71. PubMed ID: 10529501
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid goal-directed elbow flexion movements: limitations of the speed control system due to neural constraints.
    Benecke R; Meinck HM; Conrad B
    Exp Brain Res; 1985; 59(3):470-7. PubMed ID: 4029322
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A comparative evaluation of sonomyography, electromyography, force, and wrist angle in a discrete tracking task.
    Guo JY; Zheng YP; Kenney LP; Bowen A; Howard D; Canderle JJ
    Ultrasound Med Biol; 2011 Jun; 37(6):884-91. PubMed ID: 21546151
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Perceived discomfort functions based on joint moment for various joint motion directions of the upper limb.
    Chihara T; Izumi T; Seo A
    Appl Ergon; 2014 Mar; 45(2):308-17. PubMed ID: 23684117
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Similarity in the dynamics of contralateral motor overflow through increasing frequency of movement in a single limb.
    Morrison S; Hong SL; Newell KM
    Exp Brain Res; 2011 Sep; 213(4):403-14. PubMed ID: 21769546
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Muscle cocontraction following dynamics learning.
    Darainy M; Ostry DJ
    Exp Brain Res; 2008 Sep; 190(2):153-63. PubMed ID: 18584164
    [TBL] [Abstract][Full Text] [Related]  

  • 79. During slow wrist movements, distance covered affects EMG at a given external force.
    Welter TG; Bobbert MF
    Motor Control; 2001 Jan; 5(1):50-60. PubMed ID: 11173676
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A biomechanical analysis of handcycling: a case study.
    Faupin A; Gorce P; Watelain E; Meyer C; Thevenon A
    J Appl Biomech; 2010 May; 26(2):240-5. PubMed ID: 20498497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.