These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19093812)

  • 1. Development of new semiconducting polymers for high performance solar cells.
    Liang Y; Wu Y; Feng D; Tsai ST; Son HJ; Li G; Yu L
    J Am Chem Soc; 2009 Jan; 131(1):56-7. PubMed ID: 19093812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells.
    Mei J; Graham KR; Stalder R; Reynolds JR
    Org Lett; 2010 Feb; 12(4):660-3. PubMed ID: 20099892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell.
    Guo J; Liang Y; Szarko J; Lee B; Son HJ; Rolczynski BS; Yu L; Chen LX
    J Phys Chem B; 2010 Jan; 114(2):742-8. PubMed ID: 20038154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties.
    Liang Y; Feng D; Wu Y; Tsai ST; Li G; Ray C; Yu L
    J Am Chem Soc; 2009 Jun; 131(22):7792-9. PubMed ID: 19453105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control.
    Li W; Roelofs WS; Wienk MM; Janssen RA
    J Am Chem Soc; 2012 Aug; 134(33):13787-95. PubMed ID: 22812425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An easily accessible isoindigo-based polymer for high-performance polymer solar cells.
    Wang E; Ma Z; Zhang Z; Vandewal K; Henriksson P; Inganäs O; Zhang F; Andersson MR
    J Am Chem Soc; 2011 Sep; 133(36):14244-7. PubMed ID: 21848297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fullerene derivative acceptors for high performance polymer solar cells.
    He Y; Li Y
    Phys Chem Chem Phys; 2011 Feb; 13(6):1970-83. PubMed ID: 21180723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a new s-tetrazine-based copolymer for efficient solar cells.
    Li Z; Ding J; Song N; Lu J; Tao Y
    J Am Chem Soc; 2010 Sep; 132(38):13160-1. PubMed ID: 20809639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity.
    Zheng Q; Jung BJ; Sun J; Katz HE
    J Am Chem Soc; 2010 Apr; 132(15):5394-404. PubMed ID: 20102195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells.
    Price SC; Stuart AC; Yang L; Zhou H; You W
    J Am Chem Soc; 2011 Mar; 133(12):4625-31. PubMed ID: 21375339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.
    Chen CP; Chan SH; Chao TC; Ting C; Ko BT
    J Am Chem Soc; 2008 Sep; 130(38):12828-33. PubMed ID: 18759400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells.
    He Y; Chen HY; Hou J; Li Y
    J Am Chem Soc; 2010 Feb; 132(4):1377-82. PubMed ID: 20055460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient tandem polymer solar cells fabricated by all-solution processing.
    Kim JY; Lee K; Coates NE; Moses D; Nguyen TQ; Dante M; Heeger AJ
    Science; 2007 Jul; 317(5835):222-5. PubMed ID: 17626879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A planar copolymer for high efficiency polymer solar cells.
    Qin R; Li W; Li C; Du C; Veit C; Schleiermacher HF; Andersson M; Bo Z; Liu Z; Inganäs O; Wuerfel U; Zhang F
    J Am Chem Soc; 2009 Oct; 131(41):14612-3. PubMed ID: 19788295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconducting carbon nanotube aerogel bulk heterojunction solar cells.
    Ye Y; Bindl DJ; Jacobberger RM; Wu MY; Roy SS; Arnold MS
    Small; 2014 Aug; 10(16):3299-306. PubMed ID: 24719253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small band gap polymers synthesized via a modified nitration of 4,7-dibromo-2,1,3-benzothiadiazole.
    Wang E; Hou L; Wang Z; Hellström S; Mammo W; Zhang F; Inganäs O; Andersson MR
    Org Lett; 2010 Oct; 12(20):4470-3. PubMed ID: 20843090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s.
    Wong WY; Wang XZ; He Z; Chan KK; Djurisić AB; Cheung KY; Yip CT; Ng AM; Xi YY; Mak CS; Chan WK
    J Am Chem Soc; 2007 Nov; 129(46):14372-80. PubMed ID: 17967015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.