BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19093871)

  • 1. Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology.
    Xia CF; Boado RJ; Pardridge WM
    Mol Pharm; 2009; 6(3):747-51. PubMed ID: 19093871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.
    Xia CF; Zhang Y; Zhang Y; Boado RJ; Pardridge WM
    Pharm Res; 2007 Dec; 24(12):2309-16. PubMed ID: 17926121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic engineering, expression, and activity of a chimeric monoclonal antibody-avidin fusion protein for receptor-mediated delivery of biotinylated drugs in humans.
    Boado RJ; Zhang Y; Zhang Y; Xia CF; Wang Y; Pardridge WM
    Bioconjug Chem; 2008 Mar; 19(3):731-9. PubMed ID: 18278853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery.
    Jain A; Barve A; Zhao Z; Jin W; Cheng K
    Mol Pharm; 2017 May; 14(5):1517-1527. PubMed ID: 28026957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug targeting to the brain using avidin-biotin technology in the mouse; (blood-brain barrier, monoclonal antibody, transferrin receptor, Alzheimer's disease).
    Jeong Lee H; Pardridge WM
    J Drug Target; 2000; 8(6):413-24. PubMed ID: 11328667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor.
    Yoshikawa T; Pardridge WM
    J Pharmacol Exp Ther; 1992 Nov; 263(2):897-903. PubMed ID: 1432704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. shRNA and siRNA delivery to the brain.
    Pardridge WM
    Adv Drug Deliv Rev; 2007 Mar; 59(2-3):141-52. PubMed ID: 17434235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier.
    Pardridge WM; Boado RJ
    Methods Enzymol; 2012; 503():269-92. PubMed ID: 22230573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interaction of triiodothyronine-biotin conjugate with binding proteins in immunoassay systems].
    Navakouskiĭ MJ; Vashkevich II; Sviridov OV
    Bioorg Khim; 2012; 38(4):449-57. PubMed ID: 23189559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging amyloid plaque in Alzheimer's disease brain with a biotinylated Aβ peptide radiopharmaceutical conjugated to an IgG-avidin fusion protein.
    Sumbria RK; Boado RJ; Pardridge WM
    Bioconjug Chem; 2012 Jun; 23(6):1318-21. PubMed ID: 22624578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of anti-tenascin monoclonal antibody-streptavidin conjugates for pretargeting applications.
    Foulon CF; Bigner DD; Zalutsky MR
    Bioconjug Chem; 1999; 10(5):867-76. PubMed ID: 10502355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor.
    Coloma MJ; Lee HJ; Kurihara A; Landaw EM; Boado RJ; Morrison SL; Pardridge WM
    Pharm Res; 2000 Mar; 17(3):266-74. PubMed ID: 10801214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A monoclonal antibody to avidin dissociates quaternary structure and curtails biotin binding to avidin and streptavidin.
    Subramanian N; Subramanian S; Karande AA; Adiga PR
    Arch Biochem Biophys; 1997 Aug; 344(2):281-8. PubMed ID: 9264540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetics and saturable blood-brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferrin receptor.
    Kang YS; Bickel U; Pardridge WM
    Drug Metab Dispos; 1994; 22(1):99-105. PubMed ID: 8149897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor pretargeting: role of avidin/streptavidin on monoclonal antibody internalization.
    Casalini P; Luison E; Ménard S; Colnaghi MI; Paganelli G; Canevari S
    J Nucl Med; 1997 Sep; 38(9):1378-81. PubMed ID: 9293791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein.
    Boado RJ; Hui EK; Lu JZ; Zhou QH; Pardridge WM
    J Biotechnol; 2010 Mar; 146(1-2):84-91. PubMed ID: 20100527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new generation of neurobiological drugs engineered to overcome the challenges of brain drug delivery.
    Boado RJ
    Drug News Perspect; 2008 Nov; 21(9):489-503. PubMed ID: 19180267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier.
    Boado RJ; Zhang Y; Zhang Y; Pardridge WM
    Biotechnol Bioeng; 2007 Feb; 96(2):381-91. PubMed ID: 16937408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin-DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody.
    Dou S; Virostko J; Greiner DL; Powers AC; Liu G
    Mol Pharm; 2015 Aug; 12(8):3097-103. PubMed ID: 26103429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative determination of staphylococcal enterotoxin A by an enzyme-linked immunosorbent assay using a combination of polyclonal and monoclonal antibodies and biotin-streptavidin interaction.
    Edwin C
    J Clin Microbiol; 1989 Jul; 27(7):1496-501. PubMed ID: 2768439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.