BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19093973)

  • 1. Possible involvement of reactive oxygen species scavenging enzymes in desiccation sensitivity of Antiaris toxicaria seeds and axes.
    Cheng HY; Song SQ
    J Integr Plant Biol; 2008 Dec; 50(12):1549-56. PubMed ID: 19093973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viability loss pattern under rapid dehydration of Antiaris toxicaria axes and its relation to oxidative damage.
    Xin X; Jing XM; Liu Y; Song SQ
    J Integr Plant Biol; 2010 May; 52(5):434-41. PubMed ID: 20537039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species scavenging enzymes and down-adjustment of metabolism level in mitochondria associated with desiccation-tolerance acquisition of maize embryo.
    Wu JH; Wang WQ; Song SQ; Cheng HY
    J Integr Plant Biol; 2009 Jul; 51(7):638-45. PubMed ID: 19566642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation.
    Bai X; Yang L; Tian M; Chen J; Shi J; Yang Y; Hu X
    PLoS One; 2011; 6(6):e20714. PubMed ID: 21674063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response difference of mitochondria in recalcitrant Antiaris toxicaria axes and orthodox Zea mays embryos to dehydration injury.
    Song SQ; Tian MH; Kan J; Cheng HY
    J Integr Plant Biol; 2009 Jul; 51(7):646-53. PubMed ID: 19566643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of Chinese wampee axes and maize embryos to dehydration at different rates.
    Huang H; Song SQ; Wu XJ
    J Integr Plant Biol; 2009 Jan; 51(1):67-74. PubMed ID: 19166496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) seeds.
    Ntuli TM; Finch-Savage WE; Berjak P; Pammenter NW
    J Integr Plant Biol; 2011 Apr; 53(4):270-80. PubMed ID: 21205182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.
    Ding Y; Cheng H; Song S
    Sci China C Life Sci; 2008 Sep; 51(9):842-53. PubMed ID: 18726532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.
    Roach T; Beckett RP; Minibayeva FV; Colville L; Whitaker C; Chen H; Bailly C; Kranner I
    Plant Cell Environ; 2010 Jan; 33(1):59-75. PubMed ID: 19843255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dehydration-induced intracellular solute changes and acquisition of plant desiccation tolerance].
    Zhang M; Lu Y; Wang XF
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Feb; 33(1):9-17. PubMed ID: 17287564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds.
    Pukacka S; Ratajczak E
    J Plant Physiol; 2006 Dec; 163(12):1259-66. PubMed ID: 17126729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds.
    Wojtyla Ł; Garnczarska M; Zalewski T; Bednarski W; Ratajczak L; Jurga S
    J Plant Physiol; 2006 Dec; 163(12):1207-20. PubMed ID: 16904793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.
    Huang H; Song S
    Plant Physiol Biochem; 2013 Jul; 68():61-70. PubMed ID: 23628926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds.
    Garnczarska M; Bednarski W; Jancelewicz M
    Plant Physiol Biochem; 2009 Jan; 47(1):56-62. PubMed ID: 18945622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The relationship between the desiccation-induced browning and the metabolism of active oxygen and phenolics in pericarp of postharvest longan fruit].
    Lin HT; Xi YF; Chen SJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Jun; 31(3):287-97. PubMed ID: 15961904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights on germinability and desiccation tolerance in developing neem seeds (Azadirachta indica): Role of AOS, antioxidative enzymes and dehydrin-like protein.
    Sahu B; Sahu AK; Chennareddy SR; Soni A; Naithani SC
    Plant Physiol Biochem; 2017 Mar; 112():64-73. PubMed ID: 28040634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity.
    Omoto E; Nagao H; Taniguchi M; Miyake H
    Physiol Plant; 2013 Sep; 149(1):1-12. PubMed ID: 23231594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves.
    Zhang L; Zeng F; Xiao R
    Biol Trace Elem Res; 2003 Mar; 91(3):243-52. PubMed ID: 12663948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation.
    Roach T; Ivanova M; Beckett RP; Minibayeva FV; Green I; Pritchard HW; Kranner I
    Physiol Plant; 2008 Jun; 133(2):131-9. PubMed ID: 18452494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant responses of chickpea plants subjected to boron toxicity.
    Ardic M; Sekmen AH; Tokur S; Ozdemir F; Turkan I
    Plant Biol (Stuttg); 2009 May; 11(3):328-38. PubMed ID: 19470104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.