These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Muir P; McCarthy J; Radtke CL; Markel MD; Santschi EM; Scollay MC; Kalscheur VL Bone; 2006 Mar; 38(3):342-9. PubMed ID: 16275175 [TBL] [Abstract][Full Text] [Related]
3. Subchondral bone failure in an equine model of overload arthrosis. Norrdin RW; Kawcak CE; Capwell BA; McIlwraith CW Bone; 1998 Feb; 22(2):133-9. PubMed ID: 9477236 [TBL] [Abstract][Full Text] [Related]
4. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes. Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291 [TBL] [Abstract][Full Text] [Related]
5. Scanning electron microscopic examination of third metacarpal/third metatarsal bone failure surfaces in thoroughbred racehorses with condylar fracture. Stepnik MW; Radtke CL; Scollay MC; Oshel PE; Albrecht RM; Santschi EM; Markel MD; Muir P Vet Surg; 2004; 33(1):2-10. PubMed ID: 14687180 [TBL] [Abstract][Full Text] [Related]
6. Morphologic changes associated with functional adaptation of the navicular bone of horses. Bentley VA; Sample SJ; Livesey MA; Scollay MC; Radtke CL; Frank JD; Kalscheur VL; Muir P J Anat; 2007 Nov; 211(5):662-72. PubMed ID: 17850287 [TBL] [Abstract][Full Text] [Related]
7. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. Turley SM; Thambyah A; Riggs CM; Firth EC; Broom ND J Anat; 2014 Jun; 224(6):647-58. PubMed ID: 24689513 [TBL] [Abstract][Full Text] [Related]
8. Macroscopic changes in the distal ends of the third metacarpal and metatarsal bones of Thoroughbred racehorses with condylar fractures. Radtke CL; Danova NA; Scollay MC; Santschi EM; Markel MD; Da Costa Gómez T; Muir P Am J Vet Res; 2003 Sep; 64(9):1110-6. PubMed ID: 13677388 [TBL] [Abstract][Full Text] [Related]
9. Subchondral bone microdamage accumulation in distal metacarpus of Thoroughbred racehorses. Whitton RC; Ayodele BA; Hitchens PL; Mackie EJ Equine Vet J; 2018 Nov; 50(6):766-773. PubMed ID: 29660153 [TBL] [Abstract][Full Text] [Related]
10. Subchondral bone failure in overload arthrosis: a scanning electron microscopic study in horses. Norrdin RW; Stover SM J Musculoskelet Neuronal Interact; 2006; 6(3):251-7. PubMed ID: 17142946 [TBL] [Abstract][Full Text] [Related]
11. Changes in mineralised tissue at the site of origin of condylar fracture are present before athletic training in Thoroughbred horses. Firth EC; Doube M; Boyde A N Z Vet J; 2009 Oct; 57(5):278-83. PubMed ID: 19802041 [TBL] [Abstract][Full Text] [Related]
12. Role of subchondral bone remodelling in collapse of the articular surface of Thoroughbred racehorses with palmar osteochondral disease. Bani Hassan E; Mirams M; Ghasem-Zadeh A; Mackie EJ; Whitton RC Equine Vet J; 2016 Mar; 48(2):228-33. PubMed ID: 25582246 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical testing of the calcified metacarpal articular surface and its association with subchondral bone microstructure in Thoroughbred racehorses. Williamson AJ; Sims NA; Thomas CDL; Lee PVS; Stevenson MA; Whitton RC Equine Vet J; 2018 Mar; 50(2):255-260. PubMed ID: 28833497 [TBL] [Abstract][Full Text] [Related]
14. Subchondral bone fatigue injury in the parasagittal condylar grooves of the third metacarpal bone in thoroughbred racehorses elevates site-specific strain concentration. Irandoust S; Whitton RC; Muir P; Henak CR J Mech Behav Biomed Mater; 2024 Jul; 155():106561. PubMed ID: 38678748 [TBL] [Abstract][Full Text] [Related]
15. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site. Doube M; Firth EC; Boyde A; Bushby AJ Eur Cell Mater; 2010 Jun; 19():242-51. PubMed ID: 20524176 [TBL] [Abstract][Full Text] [Related]
16. Qualitative assessment of bone density at the distal articulating surface of the third metacarpal in Thoroughbred racehorses with and without condylar fracture. Loughridge AB; Hess AM; Parkin TD; Kawcak CE Equine Vet J; 2017 Mar; 49(2):172-177. PubMed ID: 26638772 [TBL] [Abstract][Full Text] [Related]
17. Thoroughbred horses in race training have lower levels of subchondral bone remodelling in highly loaded regions of the distal metacarpus compared to horses resting from training. Holmes JM; Mirams M; Mackie EJ; Whitton RC Vet J; 2014 Dec; 202(3):443-7. PubMed ID: 25296852 [TBL] [Abstract][Full Text] [Related]
18. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095 [TBL] [Abstract][Full Text] [Related]
19. Morphological analysis of third metacarpus cartilage and subchondral bone in Thoroughbred racehorses: An ex vivo study. Marsiglia MF; Yamada ALM; Agreste FR; de Sá LRM; Nieman RT; da Silva LCLC Anat Rec (Hoboken); 2022 Dec; 305(12):3385-3397. PubMed ID: 35338614 [TBL] [Abstract][Full Text] [Related]
20. Can high-resolution peripheral quantitative computed tomography imaging of subchondral and cortical bone predict condylar fracture in Thoroughbred racehorses? Trope GD; Ghasem-Zadeh A; Anderson GA; Mackie EJ; Whitton RC Equine Vet J; 2015 Jul; 47(4):428-32. PubMed ID: 24964378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]